Loading…

Depth compression via planar segmentation

Augmented Reality applications are set to revolutionize the smartphone industry due to the integration of RGB-D sensors into mobile devices. Given the large number of smartphone users, efficient storage and transmission of RGB-D data is of paramount interest to the research community. While there ex...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2019-03, Vol.78 (6), p.6529-6558
Main Authors: Kumar, S. Hemanth, K. R. Ramakrishnan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-12bc112f98c46e50f836de7e6a09361fc59f29d52a639df9c27bb231f8959eb03
cites cdi_FETCH-LOGICAL-c316t-12bc112f98c46e50f836de7e6a09361fc59f29d52a639df9c27bb231f8959eb03
container_end_page 6558
container_issue 6
container_start_page 6529
container_title Multimedia tools and applications
container_volume 78
creator Kumar, S. Hemanth
K. R. Ramakrishnan
description Augmented Reality applications are set to revolutionize the smartphone industry due to the integration of RGB-D sensors into mobile devices. Given the large number of smartphone users, efficient storage and transmission of RGB-D data is of paramount interest to the research community. While there exist Video Coding Standards such as HEVC and H.264/AVC for compression of RGB/texture component, the coding of depth data is still an area of active research. This paper presents a method for coding depth videos, captured from mobile RGB-D sensors, by planar segmentation. The segmentation algorithm is based on Markov Random Field assumptions on depth data and solved using Graph Cuts. While all prior works based on this approach remain restricted to images only and under noise-free conditions, this paper presents an efficient solution to planar segmentation in noisy depth videos. Also presented is a unique method to encode depth based on its segmented planar representation. Experiments on depth captured from a noisy sensor (Microsoft Kinect) shows superior Rate-Distortion performance over the 3D extension of HEVC codec.
doi_str_mv 10.1007/s11042-018-6327-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075214841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075214841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-12bc112f98c46e50f836de7e6a09361fc59f29d52a639df9c27bb231f8959eb03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCJw_RmXxujlI_oeBFzyGbTWpLu7smW8F_b8oKnjzNMDzvO_AQcolwgwD6NiOCYBSwpoozTcURmaHUnGrN8LjsvAaqJeApOct5A4BKMjEj1_dhGD8q3--GFHJe9131tXbVsHWdS1UOq13oRjeW-zk5iW6bw8XvnJP3x4e3xTNdvj69LO6W1HNUI0XWeEQWTe2FChJizVUbdFAODFcYvTSRmVYyp7hpo_FMNw3jGGsjTWiAz8nV1Duk_nMf8mg3_T515aVloCVDUQssFE6UT33OKUQ7pPXOpW-LYA9G7GTEFiP2YMSKkmFTJhe2W4X01_x_6Ae63WHr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075214841</pqid></control><display><type>article</type><title>Depth compression via planar segmentation</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Kumar, S. Hemanth ; K. R. Ramakrishnan</creator><creatorcontrib>Kumar, S. Hemanth ; K. R. Ramakrishnan</creatorcontrib><description>Augmented Reality applications are set to revolutionize the smartphone industry due to the integration of RGB-D sensors into mobile devices. Given the large number of smartphone users, efficient storage and transmission of RGB-D data is of paramount interest to the research community. While there exist Video Coding Standards such as HEVC and H.264/AVC for compression of RGB/texture component, the coding of depth data is still an area of active research. This paper presents a method for coding depth videos, captured from mobile RGB-D sensors, by planar segmentation. The segmentation algorithm is based on Markov Random Field assumptions on depth data and solved using Graph Cuts. While all prior works based on this approach remain restricted to images only and under noise-free conditions, this paper presents an efficient solution to planar segmentation in noisy depth videos. Also presented is a unique method to encode depth based on its segmented planar representation. Experiments on depth captured from a noisy sensor (Microsoft Kinect) shows superior Rate-Distortion performance over the 3D extension of HEVC codec.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-6327-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Augmented reality ; Codec ; Coding ; Coding standards ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Electronic devices ; Image segmentation ; Markov processes ; Multimedia Information Systems ; Sensors ; Smartphones ; Special Purpose and Application-Based Systems ; Video compression</subject><ispartof>Multimedia tools and applications, 2019-03, Vol.78 (6), p.6529-6558</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-12bc112f98c46e50f836de7e6a09361fc59f29d52a639df9c27bb231f8959eb03</citedby><cites>FETCH-LOGICAL-c316t-12bc112f98c46e50f836de7e6a09361fc59f29d52a639df9c27bb231f8959eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2075214841/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2075214841?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,11671,27907,27908,36043,44346,74646</link.rule.ids></links><search><creatorcontrib>Kumar, S. Hemanth</creatorcontrib><creatorcontrib>K. R. Ramakrishnan</creatorcontrib><title>Depth compression via planar segmentation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Augmented Reality applications are set to revolutionize the smartphone industry due to the integration of RGB-D sensors into mobile devices. Given the large number of smartphone users, efficient storage and transmission of RGB-D data is of paramount interest to the research community. While there exist Video Coding Standards such as HEVC and H.264/AVC for compression of RGB/texture component, the coding of depth data is still an area of active research. This paper presents a method for coding depth videos, captured from mobile RGB-D sensors, by planar segmentation. The segmentation algorithm is based on Markov Random Field assumptions on depth data and solved using Graph Cuts. While all prior works based on this approach remain restricted to images only and under noise-free conditions, this paper presents an efficient solution to planar segmentation in noisy depth videos. Also presented is a unique method to encode depth based on its segmented planar representation. Experiments on depth captured from a noisy sensor (Microsoft Kinect) shows superior Rate-Distortion performance over the 3D extension of HEVC codec.</description><subject>Augmented reality</subject><subject>Codec</subject><subject>Coding</subject><subject>Coding standards</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Electronic devices</subject><subject>Image segmentation</subject><subject>Markov processes</subject><subject>Multimedia Information Systems</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Video compression</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCJw_RmXxujlI_oeBFzyGbTWpLu7smW8F_b8oKnjzNMDzvO_AQcolwgwD6NiOCYBSwpoozTcURmaHUnGrN8LjsvAaqJeApOct5A4BKMjEj1_dhGD8q3--GFHJe9131tXbVsHWdS1UOq13oRjeW-zk5iW6bw8XvnJP3x4e3xTNdvj69LO6W1HNUI0XWeEQWTe2FChJizVUbdFAODFcYvTSRmVYyp7hpo_FMNw3jGGsjTWiAz8nV1Duk_nMf8mg3_T515aVloCVDUQssFE6UT33OKUQ7pPXOpW-LYA9G7GTEFiP2YMSKkmFTJhe2W4X01_x_6Ae63WHr</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Kumar, S. Hemanth</creator><creator>K. R. Ramakrishnan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190301</creationdate><title>Depth compression via planar segmentation</title><author>Kumar, S. Hemanth ; K. R. Ramakrishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-12bc112f98c46e50f836de7e6a09361fc59f29d52a639df9c27bb231f8959eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Augmented reality</topic><topic>Codec</topic><topic>Coding</topic><topic>Coding standards</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Electronic devices</topic><topic>Image segmentation</topic><topic>Markov processes</topic><topic>Multimedia Information Systems</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S. Hemanth</creatorcontrib><creatorcontrib>K. R. Ramakrishnan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S. Hemanth</au><au>K. R. Ramakrishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth compression via planar segmentation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>78</volume><issue>6</issue><spage>6529</spage><epage>6558</epage><pages>6529-6558</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Augmented Reality applications are set to revolutionize the smartphone industry due to the integration of RGB-D sensors into mobile devices. Given the large number of smartphone users, efficient storage and transmission of RGB-D data is of paramount interest to the research community. While there exist Video Coding Standards such as HEVC and H.264/AVC for compression of RGB/texture component, the coding of depth data is still an area of active research. This paper presents a method for coding depth videos, captured from mobile RGB-D sensors, by planar segmentation. The segmentation algorithm is based on Markov Random Field assumptions on depth data and solved using Graph Cuts. While all prior works based on this approach remain restricted to images only and under noise-free conditions, this paper presents an efficient solution to planar segmentation in noisy depth videos. Also presented is a unique method to encode depth based on its segmented planar representation. Experiments on depth captured from a noisy sensor (Microsoft Kinect) shows superior Rate-Distortion performance over the 3D extension of HEVC codec.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-6327-4</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2019-03, Vol.78 (6), p.6529-6558
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2075214841
source ABI/INFORM Global; Springer Nature
subjects Augmented reality
Codec
Coding
Coding standards
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Electronic devices
Image segmentation
Markov processes
Multimedia Information Systems
Sensors
Smartphones
Special Purpose and Application-Based Systems
Video compression
title Depth compression via planar segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20compression%20via%20planar%20segmentation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Kumar,%20S.%20Hemanth&rft.date=2019-03-01&rft.volume=78&rft.issue=6&rft.spage=6529&rft.epage=6558&rft.pages=6529-6558&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-6327-4&rft_dat=%3Cproquest_cross%3E2075214841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-12bc112f98c46e50f836de7e6a09361fc59f29d52a639df9c27bb231f8959eb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075214841&rft_id=info:pmid/&rfr_iscdi=true