Loading…
The stellar mass distribution of S\(^{4}\)G disk galaxies
We use 3.6 \(\mu\)m imaging from the S\(^{4}\)G survey to characterize the typical stellar density profiles (\(\Sigma_{\ast}\)) and bars as a function of fundamental galaxy parameters (e.g. the total stellar mass \(M_{\ast}\)), providing observational constraints for galaxy simulation models to be c...
Saved in:
Published in: | arXiv.org 2016-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We use 3.6 \(\mu\)m imaging from the S\(^{4}\)G survey to characterize the typical stellar density profiles (\(\Sigma_{\ast}\)) and bars as a function of fundamental galaxy parameters (e.g. the total stellar mass \(M_{\ast}\)), providing observational constraints for galaxy simulation models to be compared with. We rescale galaxy images to a common frame determined by the size in physical units, by their disk scalelength, or by their bar size and orientation. We stack the resized images to obtain statistically representative average stellar disks and bars. For a given \(M_{\ast}\) bin (\(\ge 10^{9}M_{\odot}\)), we find a significant difference in the stellar density profiles of barred and non-barred systems that gives evidence for bar-induced secular evolution of disk galaxies: (i) disks in barred galaxies show larger scalelengths and fainter extrapolated central surface brightnesses, (ii) the mean surface brightness profiles of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation, and (iii) the central mass concentration of barred galaxies is larger (by almost a factor 2 when \(T |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1606.02458 |