Loading…
Quantum and Tunnelling Capacitance in Charge and Spin Qubits
We present a theoretical analysis of the capacitance of a double quantum dot in the charge and spin qubit configurations probed at high-frequencies. We find that in general the total capacitance of the system consists of two state-dependent terms: The quantum capacitance arising from adiabatic charg...
Saved in:
Published in: | arXiv.org 2016-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a theoretical analysis of the capacitance of a double quantum dot in the charge and spin qubit configurations probed at high-frequencies. We find that in general the total capacitance of the system consists of two state-dependent terms: The quantum capacitance arising from adiabatic charge motion and the tunnelling capacitance that appears when repopulation occurs at a rate comparable or faster than the probing frequency. The analysis of the capacitance lineshape as a function of externally controllable variables offers a way to characterize the qubits' charge and spin state as well as relevant system parameters such as charge and spin relaxation times, tunnel coupling, electron temperature and electron g-factor. Overall, our analysis provides a formalism to understand dispersive qubit-resonator interactions which can be applied to high-sensitivity and non-invasive quantum-state readout. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1604.02884 |