Loading…
Optimal control with non-adiabatic Molecular Dynamics: application to the Coulomb explosion of Sodium clusters
We present an implementation of optimal control theory for the first-principles non-adiabatic Ehrenfest Molecular Dynamics model, which describes a condensed matter system by considering classical point-particle nuclei, and quantum electrons, handled in our case with time-dependent density-functiona...
Saved in:
Published in: | arXiv.org 2017-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an implementation of optimal control theory for the first-principles non-adiabatic Ehrenfest Molecular Dynamics model, which describes a condensed matter system by considering classical point-particle nuclei, and quantum electrons, handled in our case with time-dependent density-functional theory. The scheme is demonstrated by optimizing the Coulomb explosion of small Sodium clusters: the algorithm is set to find the optimal femtosecond laser pulses that disintegrate the clusters, for a given total pulse duration, fluence, and cut-off frequency. We describe the numerical details and difficulties of the methodology. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1606.07619 |