Loading…
Computation and Stability of Traveling Waves in Second Order Evolution Equations
The topic of this paper are nonlinear traveling waves occuring in a system of damped waves equations in one space variable. We extend the freezing method from first to second order equations in time. When applied to a Cauchy problem, this method generates a comoving frame in which the solution becom...
Saved in:
Published in: | arXiv.org 2017-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wolf-Jürgen Beyn Otten, Denny Rottmann-Matthes, Jens |
description | The topic of this paper are nonlinear traveling waves occuring in a system of damped waves equations in one space variable. We extend the freezing method from first to second order equations in time. When applied to a Cauchy problem, this method generates a comoving frame in which the solution becomes stationary. In addition it generates an algebraic variable which converges to the speed of the wave, provided the original wave satisfies certain spectral conditions and initial perturbations are sufficiently small. We develop a rigorous theory for this effect by recourse to some recent nonlinear stability results for waves in first order hyperbolic systems. Numerical computations illustrate the theory for examples of Nagumo and FitzHugh-Nagumo type. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075394197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075394197</sourcerecordid><originalsourceid>FETCH-proquest_journals_20753941973</originalsourceid><addsrcrecordid>eNqNjN8KgjAchUcQJOU7_KBrYW6aeS1GdwUKXcrMGZO16f4IvX0iPUBX54PznbNBAaE0js4JITsUWjtgjMkpI2lKA3Qv9Hv0jjmhFTDVQeVYK6RwH9A91IbNXAr1gscCFoSCij_1ot1Mxw2Us5Z-nZaTXz_sAW17Ji0Pf7lHx0tZF9doNHry3Lpm0N6opWoIzlKaJ3Ge0f-sL3ImPyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075394197</pqid></control><display><type>article</type><title>Computation and Stability of Traveling Waves in Second Order Evolution Equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wolf-Jürgen Beyn ; Otten, Denny ; Rottmann-Matthes, Jens</creator><creatorcontrib>Wolf-Jürgen Beyn ; Otten, Denny ; Rottmann-Matthes, Jens</creatorcontrib><description>The topic of this paper are nonlinear traveling waves occuring in a system of damped waves equations in one space variable. We extend the freezing method from first to second order equations in time. When applied to a Cauchy problem, this method generates a comoving frame in which the solution becomes stationary. In addition it generates an algebraic variable which converges to the speed of the wave, provided the original wave satisfies certain spectral conditions and initial perturbations are sufficiently small. We develop a rigorous theory for this effect by recourse to some recent nonlinear stability results for waves in first order hyperbolic systems. Numerical computations illustrate the theory for examples of Nagumo and FitzHugh-Nagumo type.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cauchy problems ; Freezing ; Hyperbolic systems ; Mathematical analysis ; Stability ; Traveling waves</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075394197?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wolf-Jürgen Beyn</creatorcontrib><creatorcontrib>Otten, Denny</creatorcontrib><creatorcontrib>Rottmann-Matthes, Jens</creatorcontrib><title>Computation and Stability of Traveling Waves in Second Order Evolution Equations</title><title>arXiv.org</title><description>The topic of this paper are nonlinear traveling waves occuring in a system of damped waves equations in one space variable. We extend the freezing method from first to second order equations in time. When applied to a Cauchy problem, this method generates a comoving frame in which the solution becomes stationary. In addition it generates an algebraic variable which converges to the speed of the wave, provided the original wave satisfies certain spectral conditions and initial perturbations are sufficiently small. We develop a rigorous theory for this effect by recourse to some recent nonlinear stability results for waves in first order hyperbolic systems. Numerical computations illustrate the theory for examples of Nagumo and FitzHugh-Nagumo type.</description><subject>Cauchy problems</subject><subject>Freezing</subject><subject>Hyperbolic systems</subject><subject>Mathematical analysis</subject><subject>Stability</subject><subject>Traveling waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjN8KgjAchUcQJOU7_KBrYW6aeS1GdwUKXcrMGZO16f4IvX0iPUBX54PznbNBAaE0js4JITsUWjtgjMkpI2lKA3Qv9Hv0jjmhFTDVQeVYK6RwH9A91IbNXAr1gscCFoSCij_1ot1Mxw2Us5Z-nZaTXz_sAW17Ji0Pf7lHx0tZF9doNHry3Lpm0N6opWoIzlKaJ3Ge0f-sL3ImPyI</recordid><startdate>20170411</startdate><enddate>20170411</enddate><creator>Wolf-Jürgen Beyn</creator><creator>Otten, Denny</creator><creator>Rottmann-Matthes, Jens</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170411</creationdate><title>Computation and Stability of Traveling Waves in Second Order Evolution Equations</title><author>Wolf-Jürgen Beyn ; Otten, Denny ; Rottmann-Matthes, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20753941973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cauchy problems</topic><topic>Freezing</topic><topic>Hyperbolic systems</topic><topic>Mathematical analysis</topic><topic>Stability</topic><topic>Traveling waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolf-Jürgen Beyn</creatorcontrib><creatorcontrib>Otten, Denny</creatorcontrib><creatorcontrib>Rottmann-Matthes, Jens</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf-Jürgen Beyn</au><au>Otten, Denny</au><au>Rottmann-Matthes, Jens</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Computation and Stability of Traveling Waves in Second Order Evolution Equations</atitle><jtitle>arXiv.org</jtitle><date>2017-04-11</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The topic of this paper are nonlinear traveling waves occuring in a system of damped waves equations in one space variable. We extend the freezing method from first to second order equations in time. When applied to a Cauchy problem, this method generates a comoving frame in which the solution becomes stationary. In addition it generates an algebraic variable which converges to the speed of the wave, provided the original wave satisfies certain spectral conditions and initial perturbations are sufficiently small. We develop a rigorous theory for this effect by recourse to some recent nonlinear stability results for waves in first order hyperbolic systems. Numerical computations illustrate the theory for examples of Nagumo and FitzHugh-Nagumo type.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075394197 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Cauchy problems Freezing Hyperbolic systems Mathematical analysis Stability Traveling waves |
title | Computation and Stability of Traveling Waves in Second Order Evolution Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Computation%20and%20Stability%20of%20Traveling%20Waves%20in%20Second%20Order%20Evolution%20Equations&rft.jtitle=arXiv.org&rft.au=Wolf-J%C3%BCrgen%20Beyn&rft.date=2017-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075394197%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20753941973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075394197&rft_id=info:pmid/&rfr_iscdi=true |