Loading…

Sequential Quantiles via Hermite Series Density Estimation

Sequential quantile estimation refers to incorporating observations into quantile estimates in an incremental fashion thus furnishing an online estimate of one or more quantiles at any given point in time. Sequential quantile estimation is also known as online quantile estimation. This area is relev...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-03
Main Authors: Stephanou, Michael, Varughese, Melvin, Macdonald, Iain
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Stephanou, Michael
Varughese, Melvin
Macdonald, Iain
description Sequential quantile estimation refers to incorporating observations into quantile estimates in an incremental fashion thus furnishing an online estimate of one or more quantiles at any given point in time. Sequential quantile estimation is also known as online quantile estimation. This area is relevant to the analysis of data streams and to the one-pass analysis of massive data sets. Applications include network traffic and latency analysis, real time fraud detection and high frequency trading. We introduce new techniques for online quantile estimation based on Hermite series estimators in the settings of static quantile estimation and dynamic quantile estimation. In the static quantile estimation setting we apply the existing Gauss-Hermite expansion in a novel manner. In particular, we exploit the fact that Gauss-Hermite coefficients can be updated in a sequential manner. To treat dynamic quantile estimation we introduce a novel expansion with an exponentially weighted estimator for the Gauss-Hermite coefficients which we term the Exponentially Weighted Gauss-Hermite (EWGH) expansion. These algorithms go beyond existing sequential quantile estimation algorithms in that they allow arbitrary quantiles (as opposed to pre-specified quantiles) to be estimated at any point in time. In doing so we provide a solution to online distribution function and online quantile function estimation on data streams. In particular we derive an analytical expression for the CDF and prove consistency results for the CDF under certain conditions. In addition we analyse the associated quantile estimator. Simulation studies and tests on real data reveal the Gauss-Hermite based algorithms to be competitive with a leading existing algorithm.
doi_str_mv 10.48550/arxiv.1507.05073
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075422263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075422263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-da773e784433ac8f85a72a2ca28f7e62a6be0d30d130d4ae684fc468d7a98e8f3</originalsourceid><addsrcrecordid>eNotT01Lw0AQXQShpfYH9BbwnLiZ2S-9Sa1WKIi09zImE9iSJrq7KfrvXdDD--AdZt4TYlXLSjmt5R2Fb3-pai1tJTPhlZgDYl06BTATyxhPUkowFrTGuXjY89fEQ_LUF-8TZdNzLC6eii2Hs09c7Dn4HD3xEH36KTYx-TMlPw434rqjPvLyXxfi8Lw5rLfl7u3ldf24K0kDli1Zi2ydUojUuM5pskDQELjOsgEyHyxblG2doYiNU12jjGst3Tt2HS7E7d_ZzzDmqjEdT-MUhvzxCNLqvAoM4i-SkUj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075422263</pqid></control><display><type>article</type><title>Sequential Quantiles via Hermite Series Density Estimation</title><source>Publicly Available Content Database</source><creator>Stephanou, Michael ; Varughese, Melvin ; Macdonald, Iain</creator><creatorcontrib>Stephanou, Michael ; Varughese, Melvin ; Macdonald, Iain</creatorcontrib><description>Sequential quantile estimation refers to incorporating observations into quantile estimates in an incremental fashion thus furnishing an online estimate of one or more quantiles at any given point in time. Sequential quantile estimation is also known as online quantile estimation. This area is relevant to the analysis of data streams and to the one-pass analysis of massive data sets. Applications include network traffic and latency analysis, real time fraud detection and high frequency trading. We introduce new techniques for online quantile estimation based on Hermite series estimators in the settings of static quantile estimation and dynamic quantile estimation. In the static quantile estimation setting we apply the existing Gauss-Hermite expansion in a novel manner. In particular, we exploit the fact that Gauss-Hermite coefficients can be updated in a sequential manner. To treat dynamic quantile estimation we introduce a novel expansion with an exponentially weighted estimator for the Gauss-Hermite coefficients which we term the Exponentially Weighted Gauss-Hermite (EWGH) expansion. These algorithms go beyond existing sequential quantile estimation algorithms in that they allow arbitrary quantiles (as opposed to pre-specified quantiles) to be estimated at any point in time. In doing so we provide a solution to online distribution function and online quantile function estimation on data streams. In particular we derive an analytical expression for the CDF and prove consistency results for the CDF under certain conditions. In addition we analyse the associated quantile estimator. Simulation studies and tests on real data reveal the Gauss-Hermite based algorithms to be competitive with a leading existing algorithm.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1507.05073</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Communications traffic ; Computer simulation ; Data analysis ; Data transmission ; Distribution functions ; Fraud ; Massive data points ; Quantiles ; Regression analysis</subject><ispartof>arXiv.org, 2017-03</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075422263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Stephanou, Michael</creatorcontrib><creatorcontrib>Varughese, Melvin</creatorcontrib><creatorcontrib>Macdonald, Iain</creatorcontrib><title>Sequential Quantiles via Hermite Series Density Estimation</title><title>arXiv.org</title><description>Sequential quantile estimation refers to incorporating observations into quantile estimates in an incremental fashion thus furnishing an online estimate of one or more quantiles at any given point in time. Sequential quantile estimation is also known as online quantile estimation. This area is relevant to the analysis of data streams and to the one-pass analysis of massive data sets. Applications include network traffic and latency analysis, real time fraud detection and high frequency trading. We introduce new techniques for online quantile estimation based on Hermite series estimators in the settings of static quantile estimation and dynamic quantile estimation. In the static quantile estimation setting we apply the existing Gauss-Hermite expansion in a novel manner. In particular, we exploit the fact that Gauss-Hermite coefficients can be updated in a sequential manner. To treat dynamic quantile estimation we introduce a novel expansion with an exponentially weighted estimator for the Gauss-Hermite coefficients which we term the Exponentially Weighted Gauss-Hermite (EWGH) expansion. These algorithms go beyond existing sequential quantile estimation algorithms in that they allow arbitrary quantiles (as opposed to pre-specified quantiles) to be estimated at any point in time. In doing so we provide a solution to online distribution function and online quantile function estimation on data streams. In particular we derive an analytical expression for the CDF and prove consistency results for the CDF under certain conditions. In addition we analyse the associated quantile estimator. Simulation studies and tests on real data reveal the Gauss-Hermite based algorithms to be competitive with a leading existing algorithm.</description><subject>Algorithms</subject><subject>Communications traffic</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Data transmission</subject><subject>Distribution functions</subject><subject>Fraud</subject><subject>Massive data points</subject><subject>Quantiles</subject><subject>Regression analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT01Lw0AQXQShpfYH9BbwnLiZ2S-9Sa1WKIi09zImE9iSJrq7KfrvXdDD--AdZt4TYlXLSjmt5R2Fb3-pai1tJTPhlZgDYl06BTATyxhPUkowFrTGuXjY89fEQ_LUF-8TZdNzLC6eii2Hs09c7Dn4HD3xEH36KTYx-TMlPw434rqjPvLyXxfi8Lw5rLfl7u3ldf24K0kDli1Zi2ydUojUuM5pskDQELjOsgEyHyxblG2doYiNU12jjGst3Tt2HS7E7d_ZzzDmqjEdT-MUhvzxCNLqvAoM4i-SkUj8</recordid><startdate>20170304</startdate><enddate>20170304</enddate><creator>Stephanou, Michael</creator><creator>Varughese, Melvin</creator><creator>Macdonald, Iain</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170304</creationdate><title>Sequential Quantiles via Hermite Series Density Estimation</title><author>Stephanou, Michael ; Varughese, Melvin ; Macdonald, Iain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-da773e784433ac8f85a72a2ca28f7e62a6be0d30d130d4ae684fc468d7a98e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Communications traffic</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Data transmission</topic><topic>Distribution functions</topic><topic>Fraud</topic><topic>Massive data points</topic><topic>Quantiles</topic><topic>Regression analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Stephanou, Michael</creatorcontrib><creatorcontrib>Varughese, Melvin</creatorcontrib><creatorcontrib>Macdonald, Iain</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephanou, Michael</au><au>Varughese, Melvin</au><au>Macdonald, Iain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Quantiles via Hermite Series Density Estimation</atitle><jtitle>arXiv.org</jtitle><date>2017-03-04</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Sequential quantile estimation refers to incorporating observations into quantile estimates in an incremental fashion thus furnishing an online estimate of one or more quantiles at any given point in time. Sequential quantile estimation is also known as online quantile estimation. This area is relevant to the analysis of data streams and to the one-pass analysis of massive data sets. Applications include network traffic and latency analysis, real time fraud detection and high frequency trading. We introduce new techniques for online quantile estimation based on Hermite series estimators in the settings of static quantile estimation and dynamic quantile estimation. In the static quantile estimation setting we apply the existing Gauss-Hermite expansion in a novel manner. In particular, we exploit the fact that Gauss-Hermite coefficients can be updated in a sequential manner. To treat dynamic quantile estimation we introduce a novel expansion with an exponentially weighted estimator for the Gauss-Hermite coefficients which we term the Exponentially Weighted Gauss-Hermite (EWGH) expansion. These algorithms go beyond existing sequential quantile estimation algorithms in that they allow arbitrary quantiles (as opposed to pre-specified quantiles) to be estimated at any point in time. In doing so we provide a solution to online distribution function and online quantile function estimation on data streams. In particular we derive an analytical expression for the CDF and prove consistency results for the CDF under certain conditions. In addition we analyse the associated quantile estimator. Simulation studies and tests on real data reveal the Gauss-Hermite based algorithms to be competitive with a leading existing algorithm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1507.05073</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075422263
source Publicly Available Content Database
subjects Algorithms
Communications traffic
Computer simulation
Data analysis
Data transmission
Distribution functions
Fraud
Massive data points
Quantiles
Regression analysis
title Sequential Quantiles via Hermite Series Density Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Quantiles%20via%20Hermite%20Series%20Density%20Estimation&rft.jtitle=arXiv.org&rft.au=Stephanou,%20Michael&rft.date=2017-03-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1507.05073&rft_dat=%3Cproquest%3E2075422263%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-da773e784433ac8f85a72a2ca28f7e62a6be0d30d130d4ae684fc468d7a98e8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075422263&rft_id=info:pmid/&rfr_iscdi=true