Loading…

Marine redox fluctuation as a potential trigger for the Cambrian explosion

The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirec...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2018-07, Vol.46 (7), p.587-590
Main Authors: Wei Guangyi, Wei Guangyi, Planavsky, Noah J, Tarhan, Lidya G, Chen Xi, Chen Xi, Wei Wei, Wei Wei, Li Da, Li Da, Ling Hongfei, Ling Hongfei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073
cites cdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073
container_end_page 590
container_issue 7
container_start_page 587
container_title Geology (Boulder)
container_volume 46
creator Wei Guangyi, Wei Guangyi
Planavsky, Noah J
Tarhan, Lidya G
Chen Xi, Chen Xi
Wei Wei, Wei Wei
Li Da, Li Da
Ling Hongfei, Ling Hongfei
description The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna.
doi_str_mv 10.1130/G40150.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075663026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075663026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK6CHyHgRZBq_jRpcpRFV2XFi55DNp2sXbpNTVJcv72VevDoYZhh-L334CF0Tsk1pZzcLEtCxXgfoBnVJS-YVOwQzQjRtKgk5cfoJKUtIbQUlZqhp2cbmw5whDrssW8Hlwebm9Bhm7DFfcjQ5ca2OMdms4GIfYg4vwNe2N06NrbDsO_bkEbFKTrytk1w9rvn6O3-7nXxUKxelo-L21VhS8pyoTgTXjJvZQ2ea1ur9TgUtCa11aCFZdRVFCSxQpXOMa4VA3D1-PWSVHyOLibfPoaPAVI22zDEbow0jFRCSk6YHKnLiXIxpBTBmz42Oxu_DCXmpykzNWXoiF5N6AZCcg10Dj5DbOu_vlQZIiopq3_TpRZc8m8fDnhe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075663026</pqid></control><display><type>article</type><title>Marine redox fluctuation as a potential trigger for the Cambrian explosion</title><source>GeoScienceWorld</source><creator>Wei Guangyi, Wei Guangyi ; Planavsky, Noah J ; Tarhan, Lidya G ; Chen Xi, Chen Xi ; Wei Wei, Wei Wei ; Li Da, Li Da ; Ling Hongfei, Ling Hongfei</creator><creatorcontrib>Wei Guangyi, Wei Guangyi ; Planavsky, Noah J ; Tarhan, Lidya G ; Chen Xi, Chen Xi ; Wei Wei, Wei Wei ; Li Da, Li Da ; Ling Hongfei, Ling Hongfei</creatorcontrib><description>The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G40150.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>actinides ; adaptive radiation ; Anoxia ; Asia ; Atmospheric oxygen ; biodiversity ; biologic evolution ; biostratigraphy ; C-13/C-12 ; Cambrian ; carbon ; carbonate rocks ; Carbonates ; case studies ; chemostratigraphy ; China ; depositional environment ; Ecological effects ; Ecosystems ; Ediacaran ; Environmental conditions ; Evolution ; Explosions ; Far East ; Geology ; Hubei China ; isotope ratios ; Isotopes ; Landscape ; Lower Cambrian ; marine environment ; mass balance ; metals ; Neoproterozoic ; Oxidoreductions ; Oxygen ; Oxygenation ; paleo-oceanography ; paleoecology ; paleoenvironment ; Paleozoic ; Phanerozoic ; Precambrian ; Proterozoic ; radioactive isotopes ; sea water ; sedimentary rocks ; shelf environment ; stable isotopes ; Stratigraphy ; U-238/U-235 ; upper Precambrian ; Uranium ; Uranium isotopes ; Variation ; Yunnan China</subject><ispartof>Geology (Boulder), 2018-07, Vol.46 (7), p.587-590</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</citedby><cites>FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G40150.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Wei Guangyi, Wei Guangyi</creatorcontrib><creatorcontrib>Planavsky, Noah J</creatorcontrib><creatorcontrib>Tarhan, Lidya G</creatorcontrib><creatorcontrib>Chen Xi, Chen Xi</creatorcontrib><creatorcontrib>Wei Wei, Wei Wei</creatorcontrib><creatorcontrib>Li Da, Li Da</creatorcontrib><creatorcontrib>Ling Hongfei, Ling Hongfei</creatorcontrib><title>Marine redox fluctuation as a potential trigger for the Cambrian explosion</title><title>Geology (Boulder)</title><description>The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna.</description><subject>actinides</subject><subject>adaptive radiation</subject><subject>Anoxia</subject><subject>Asia</subject><subject>Atmospheric oxygen</subject><subject>biodiversity</subject><subject>biologic evolution</subject><subject>biostratigraphy</subject><subject>C-13/C-12</subject><subject>Cambrian</subject><subject>carbon</subject><subject>carbonate rocks</subject><subject>Carbonates</subject><subject>case studies</subject><subject>chemostratigraphy</subject><subject>China</subject><subject>depositional environment</subject><subject>Ecological effects</subject><subject>Ecosystems</subject><subject>Ediacaran</subject><subject>Environmental conditions</subject><subject>Evolution</subject><subject>Explosions</subject><subject>Far East</subject><subject>Geology</subject><subject>Hubei China</subject><subject>isotope ratios</subject><subject>Isotopes</subject><subject>Landscape</subject><subject>Lower Cambrian</subject><subject>marine environment</subject><subject>mass balance</subject><subject>metals</subject><subject>Neoproterozoic</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Oxygenation</subject><subject>paleo-oceanography</subject><subject>paleoecology</subject><subject>paleoenvironment</subject><subject>Paleozoic</subject><subject>Phanerozoic</subject><subject>Precambrian</subject><subject>Proterozoic</subject><subject>radioactive isotopes</subject><subject>sea water</subject><subject>sedimentary rocks</subject><subject>shelf environment</subject><subject>stable isotopes</subject><subject>Stratigraphy</subject><subject>U-238/U-235</subject><subject>upper Precambrian</subject><subject>Uranium</subject><subject>Uranium isotopes</subject><subject>Variation</subject><subject>Yunnan China</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK6CHyHgRZBq_jRpcpRFV2XFi55DNp2sXbpNTVJcv72VevDoYZhh-L334CF0Tsk1pZzcLEtCxXgfoBnVJS-YVOwQzQjRtKgk5cfoJKUtIbQUlZqhp2cbmw5whDrssW8Hlwebm9Bhm7DFfcjQ5ca2OMdms4GIfYg4vwNe2N06NrbDsO_bkEbFKTrytk1w9rvn6O3-7nXxUKxelo-L21VhS8pyoTgTXjJvZQ2ea1ur9TgUtCa11aCFZdRVFCSxQpXOMa4VA3D1-PWSVHyOLibfPoaPAVI22zDEbow0jFRCSk6YHKnLiXIxpBTBmz42Oxu_DCXmpykzNWXoiF5N6AZCcg10Dj5DbOu_vlQZIiopq3_TpRZc8m8fDnhe</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Wei Guangyi, Wei Guangyi</creator><creator>Planavsky, Noah J</creator><creator>Tarhan, Lidya G</creator><creator>Chen Xi, Chen Xi</creator><creator>Wei Wei, Wei Wei</creator><creator>Li Da, Li Da</creator><creator>Ling Hongfei, Ling Hongfei</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20180701</creationdate><title>Marine redox fluctuation as a potential trigger for the Cambrian explosion</title><author>Wei Guangyi, Wei Guangyi ; Planavsky, Noah J ; Tarhan, Lidya G ; Chen Xi, Chen Xi ; Wei Wei, Wei Wei ; Li Da, Li Da ; Ling Hongfei, Ling Hongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>actinides</topic><topic>adaptive radiation</topic><topic>Anoxia</topic><topic>Asia</topic><topic>Atmospheric oxygen</topic><topic>biodiversity</topic><topic>biologic evolution</topic><topic>biostratigraphy</topic><topic>C-13/C-12</topic><topic>Cambrian</topic><topic>carbon</topic><topic>carbonate rocks</topic><topic>Carbonates</topic><topic>case studies</topic><topic>chemostratigraphy</topic><topic>China</topic><topic>depositional environment</topic><topic>Ecological effects</topic><topic>Ecosystems</topic><topic>Ediacaran</topic><topic>Environmental conditions</topic><topic>Evolution</topic><topic>Explosions</topic><topic>Far East</topic><topic>Geology</topic><topic>Hubei China</topic><topic>isotope ratios</topic><topic>Isotopes</topic><topic>Landscape</topic><topic>Lower Cambrian</topic><topic>marine environment</topic><topic>mass balance</topic><topic>metals</topic><topic>Neoproterozoic</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Oxygenation</topic><topic>paleo-oceanography</topic><topic>paleoecology</topic><topic>paleoenvironment</topic><topic>Paleozoic</topic><topic>Phanerozoic</topic><topic>Precambrian</topic><topic>Proterozoic</topic><topic>radioactive isotopes</topic><topic>sea water</topic><topic>sedimentary rocks</topic><topic>shelf environment</topic><topic>stable isotopes</topic><topic>Stratigraphy</topic><topic>U-238/U-235</topic><topic>upper Precambrian</topic><topic>Uranium</topic><topic>Uranium isotopes</topic><topic>Variation</topic><topic>Yunnan China</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei Guangyi, Wei Guangyi</creatorcontrib><creatorcontrib>Planavsky, Noah J</creatorcontrib><creatorcontrib>Tarhan, Lidya G</creatorcontrib><creatorcontrib>Chen Xi, Chen Xi</creatorcontrib><creatorcontrib>Wei Wei, Wei Wei</creatorcontrib><creatorcontrib>Li Da, Li Da</creatorcontrib><creatorcontrib>Ling Hongfei, Ling Hongfei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei Guangyi, Wei Guangyi</au><au>Planavsky, Noah J</au><au>Tarhan, Lidya G</au><au>Chen Xi, Chen Xi</au><au>Wei Wei, Wei Wei</au><au>Li Da, Li Da</au><au>Ling Hongfei, Ling Hongfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine redox fluctuation as a potential trigger for the Cambrian explosion</atitle><jtitle>Geology (Boulder)</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>46</volume><issue>7</issue><spage>587</spage><epage>590</epage><pages>587-590</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G40150.1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2018-07, Vol.46 (7), p.587-590
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_2075663026
source GeoScienceWorld
subjects actinides
adaptive radiation
Anoxia
Asia
Atmospheric oxygen
biodiversity
biologic evolution
biostratigraphy
C-13/C-12
Cambrian
carbon
carbonate rocks
Carbonates
case studies
chemostratigraphy
China
depositional environment
Ecological effects
Ecosystems
Ediacaran
Environmental conditions
Evolution
Explosions
Far East
Geology
Hubei China
isotope ratios
Isotopes
Landscape
Lower Cambrian
marine environment
mass balance
metals
Neoproterozoic
Oxidoreductions
Oxygen
Oxygenation
paleo-oceanography
paleoecology
paleoenvironment
Paleozoic
Phanerozoic
Precambrian
Proterozoic
radioactive isotopes
sea water
sedimentary rocks
shelf environment
stable isotopes
Stratigraphy
U-238/U-235
upper Precambrian
Uranium
Uranium isotopes
Variation
Yunnan China
title Marine redox fluctuation as a potential trigger for the Cambrian explosion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20redox%20fluctuation%20as%20a%20potential%20trigger%20for%20the%20Cambrian%20explosion&rft.jtitle=Geology%20(Boulder)&rft.au=Wei%20Guangyi,%20Wei%20Guangyi&rft.date=2018-07-01&rft.volume=46&rft.issue=7&rft.spage=587&rft.epage=590&rft.pages=587-590&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G40150.1&rft_dat=%3Cproquest_cross%3E2075663026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075663026&rft_id=info:pmid/&rfr_iscdi=true