Loading…
Marine redox fluctuation as a potential trigger for the Cambrian explosion
The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirec...
Saved in:
Published in: | Geology (Boulder) 2018-07, Vol.46 (7), p.587-590 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073 |
---|---|
cites | cdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073 |
container_end_page | 590 |
container_issue | 7 |
container_start_page | 587 |
container_title | Geology (Boulder) |
container_volume | 46 |
creator | Wei Guangyi, Wei Guangyi Planavsky, Noah J Tarhan, Lidya G Chen Xi, Chen Xi Wei Wei, Wei Wei Li Da, Li Da Ling Hongfei, Ling Hongfei |
description | The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna. |
doi_str_mv | 10.1130/G40150.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2075663026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075663026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK6CHyHgRZBq_jRpcpRFV2XFi55DNp2sXbpNTVJcv72VevDoYZhh-L334CF0Tsk1pZzcLEtCxXgfoBnVJS-YVOwQzQjRtKgk5cfoJKUtIbQUlZqhp2cbmw5whDrssW8Hlwebm9Bhm7DFfcjQ5ca2OMdms4GIfYg4vwNe2N06NrbDsO_bkEbFKTrytk1w9rvn6O3-7nXxUKxelo-L21VhS8pyoTgTXjJvZQ2ea1ur9TgUtCa11aCFZdRVFCSxQpXOMa4VA3D1-PWSVHyOLibfPoaPAVI22zDEbow0jFRCSk6YHKnLiXIxpBTBmz42Oxu_DCXmpykzNWXoiF5N6AZCcg10Dj5DbOu_vlQZIiopq3_TpRZc8m8fDnhe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075663026</pqid></control><display><type>article</type><title>Marine redox fluctuation as a potential trigger for the Cambrian explosion</title><source>GeoScienceWorld</source><creator>Wei Guangyi, Wei Guangyi ; Planavsky, Noah J ; Tarhan, Lidya G ; Chen Xi, Chen Xi ; Wei Wei, Wei Wei ; Li Da, Li Da ; Ling Hongfei, Ling Hongfei</creator><creatorcontrib>Wei Guangyi, Wei Guangyi ; Planavsky, Noah J ; Tarhan, Lidya G ; Chen Xi, Chen Xi ; Wei Wei, Wei Wei ; Li Da, Li Da ; Ling Hongfei, Ling Hongfei</creatorcontrib><description>The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G40150.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>actinides ; adaptive radiation ; Anoxia ; Asia ; Atmospheric oxygen ; biodiversity ; biologic evolution ; biostratigraphy ; C-13/C-12 ; Cambrian ; carbon ; carbonate rocks ; Carbonates ; case studies ; chemostratigraphy ; China ; depositional environment ; Ecological effects ; Ecosystems ; Ediacaran ; Environmental conditions ; Evolution ; Explosions ; Far East ; Geology ; Hubei China ; isotope ratios ; Isotopes ; Landscape ; Lower Cambrian ; marine environment ; mass balance ; metals ; Neoproterozoic ; Oxidoreductions ; Oxygen ; Oxygenation ; paleo-oceanography ; paleoecology ; paleoenvironment ; Paleozoic ; Phanerozoic ; Precambrian ; Proterozoic ; radioactive isotopes ; sea water ; sedimentary rocks ; shelf environment ; stable isotopes ; Stratigraphy ; U-238/U-235 ; upper Precambrian ; Uranium ; Uranium isotopes ; Variation ; Yunnan China</subject><ispartof>Geology (Boulder), 2018-07, Vol.46 (7), p.587-590</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</citedby><cites>FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G40150.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Wei Guangyi, Wei Guangyi</creatorcontrib><creatorcontrib>Planavsky, Noah J</creatorcontrib><creatorcontrib>Tarhan, Lidya G</creatorcontrib><creatorcontrib>Chen Xi, Chen Xi</creatorcontrib><creatorcontrib>Wei Wei, Wei Wei</creatorcontrib><creatorcontrib>Li Da, Li Da</creatorcontrib><creatorcontrib>Ling Hongfei, Ling Hongfei</creatorcontrib><title>Marine redox fluctuation as a potential trigger for the Cambrian explosion</title><title>Geology (Boulder)</title><description>The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna.</description><subject>actinides</subject><subject>adaptive radiation</subject><subject>Anoxia</subject><subject>Asia</subject><subject>Atmospheric oxygen</subject><subject>biodiversity</subject><subject>biologic evolution</subject><subject>biostratigraphy</subject><subject>C-13/C-12</subject><subject>Cambrian</subject><subject>carbon</subject><subject>carbonate rocks</subject><subject>Carbonates</subject><subject>case studies</subject><subject>chemostratigraphy</subject><subject>China</subject><subject>depositional environment</subject><subject>Ecological effects</subject><subject>Ecosystems</subject><subject>Ediacaran</subject><subject>Environmental conditions</subject><subject>Evolution</subject><subject>Explosions</subject><subject>Far East</subject><subject>Geology</subject><subject>Hubei China</subject><subject>isotope ratios</subject><subject>Isotopes</subject><subject>Landscape</subject><subject>Lower Cambrian</subject><subject>marine environment</subject><subject>mass balance</subject><subject>metals</subject><subject>Neoproterozoic</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Oxygenation</subject><subject>paleo-oceanography</subject><subject>paleoecology</subject><subject>paleoenvironment</subject><subject>Paleozoic</subject><subject>Phanerozoic</subject><subject>Precambrian</subject><subject>Proterozoic</subject><subject>radioactive isotopes</subject><subject>sea water</subject><subject>sedimentary rocks</subject><subject>shelf environment</subject><subject>stable isotopes</subject><subject>Stratigraphy</subject><subject>U-238/U-235</subject><subject>upper Precambrian</subject><subject>Uranium</subject><subject>Uranium isotopes</subject><subject>Variation</subject><subject>Yunnan China</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK6CHyHgRZBq_jRpcpRFV2XFi55DNp2sXbpNTVJcv72VevDoYZhh-L334CF0Tsk1pZzcLEtCxXgfoBnVJS-YVOwQzQjRtKgk5cfoJKUtIbQUlZqhp2cbmw5whDrssW8Hlwebm9Bhm7DFfcjQ5ca2OMdms4GIfYg4vwNe2N06NrbDsO_bkEbFKTrytk1w9rvn6O3-7nXxUKxelo-L21VhS8pyoTgTXjJvZQ2ea1ur9TgUtCa11aCFZdRVFCSxQpXOMa4VA3D1-PWSVHyOLibfPoaPAVI22zDEbow0jFRCSk6YHKnLiXIxpBTBmz42Oxu_DCXmpykzNWXoiF5N6AZCcg10Dj5DbOu_vlQZIiopq3_TpRZc8m8fDnhe</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Wei Guangyi, Wei Guangyi</creator><creator>Planavsky, Noah J</creator><creator>Tarhan, Lidya G</creator><creator>Chen Xi, Chen Xi</creator><creator>Wei Wei, Wei Wei</creator><creator>Li Da, Li Da</creator><creator>Ling Hongfei, Ling Hongfei</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20180701</creationdate><title>Marine redox fluctuation as a potential trigger for the Cambrian explosion</title><author>Wei Guangyi, Wei Guangyi ; Planavsky, Noah J ; Tarhan, Lidya G ; Chen Xi, Chen Xi ; Wei Wei, Wei Wei ; Li Da, Li Da ; Ling Hongfei, Ling Hongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>actinides</topic><topic>adaptive radiation</topic><topic>Anoxia</topic><topic>Asia</topic><topic>Atmospheric oxygen</topic><topic>biodiversity</topic><topic>biologic evolution</topic><topic>biostratigraphy</topic><topic>C-13/C-12</topic><topic>Cambrian</topic><topic>carbon</topic><topic>carbonate rocks</topic><topic>Carbonates</topic><topic>case studies</topic><topic>chemostratigraphy</topic><topic>China</topic><topic>depositional environment</topic><topic>Ecological effects</topic><topic>Ecosystems</topic><topic>Ediacaran</topic><topic>Environmental conditions</topic><topic>Evolution</topic><topic>Explosions</topic><topic>Far East</topic><topic>Geology</topic><topic>Hubei China</topic><topic>isotope ratios</topic><topic>Isotopes</topic><topic>Landscape</topic><topic>Lower Cambrian</topic><topic>marine environment</topic><topic>mass balance</topic><topic>metals</topic><topic>Neoproterozoic</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Oxygenation</topic><topic>paleo-oceanography</topic><topic>paleoecology</topic><topic>paleoenvironment</topic><topic>Paleozoic</topic><topic>Phanerozoic</topic><topic>Precambrian</topic><topic>Proterozoic</topic><topic>radioactive isotopes</topic><topic>sea water</topic><topic>sedimentary rocks</topic><topic>shelf environment</topic><topic>stable isotopes</topic><topic>Stratigraphy</topic><topic>U-238/U-235</topic><topic>upper Precambrian</topic><topic>Uranium</topic><topic>Uranium isotopes</topic><topic>Variation</topic><topic>Yunnan China</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei Guangyi, Wei Guangyi</creatorcontrib><creatorcontrib>Planavsky, Noah J</creatorcontrib><creatorcontrib>Tarhan, Lidya G</creatorcontrib><creatorcontrib>Chen Xi, Chen Xi</creatorcontrib><creatorcontrib>Wei Wei, Wei Wei</creatorcontrib><creatorcontrib>Li Da, Li Da</creatorcontrib><creatorcontrib>Ling Hongfei, Ling Hongfei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei Guangyi, Wei Guangyi</au><au>Planavsky, Noah J</au><au>Tarhan, Lidya G</au><au>Chen Xi, Chen Xi</au><au>Wei Wei, Wei Wei</au><au>Li Da, Li Da</au><au>Ling Hongfei, Ling Hongfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine redox fluctuation as a potential trigger for the Cambrian explosion</atitle><jtitle>Geology (Boulder)</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>46</volume><issue>7</issue><spage>587</spage><epage>590</epage><pages>587-590</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The diversification of metazoans during the latest Neoproterozoic and early Cambrian has been attributed to, among other factors, a progressive rise in surface oxygen levels. However, recent results have also questioned the idea of a prominent rise in atmospheric oxygen levels or a major or unidirectional shift in the marine redox landscape across this interval. Here, we present new carbonate-associated uranium isotope data from upper Ediacaran to lower Cambrian marine carbonate successions. These data provide evidence for short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and during Cambrian Age 2 (ca. 525 Ma). We suggest that biotic turnover and resulting ecological restructuring, triggered by marine redox fluctuations rather than progressive oxygenation, were the dominant drivers of the Cambrian explosion. Episodes of harsh environmental conditions against a backdrop of Proterozoic-Phanerozoic oceanic oxygenation on the eve of the Cambrian explosion could have, by promoting ecosystem restructuring, spurred the diversification of the Cambrian Evolutionary Fauna.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G40150.1</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2018-07, Vol.46 (7), p.587-590 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_journals_2075663026 |
source | GeoScienceWorld |
subjects | actinides adaptive radiation Anoxia Asia Atmospheric oxygen biodiversity biologic evolution biostratigraphy C-13/C-12 Cambrian carbon carbonate rocks Carbonates case studies chemostratigraphy China depositional environment Ecological effects Ecosystems Ediacaran Environmental conditions Evolution Explosions Far East Geology Hubei China isotope ratios Isotopes Landscape Lower Cambrian marine environment mass balance metals Neoproterozoic Oxidoreductions Oxygen Oxygenation paleo-oceanography paleoecology paleoenvironment Paleozoic Phanerozoic Precambrian Proterozoic radioactive isotopes sea water sedimentary rocks shelf environment stable isotopes Stratigraphy U-238/U-235 upper Precambrian Uranium Uranium isotopes Variation Yunnan China |
title | Marine redox fluctuation as a potential trigger for the Cambrian explosion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20redox%20fluctuation%20as%20a%20potential%20trigger%20for%20the%20Cambrian%20explosion&rft.jtitle=Geology%20(Boulder)&rft.au=Wei%20Guangyi,%20Wei%20Guangyi&rft.date=2018-07-01&rft.volume=46&rft.issue=7&rft.spage=587&rft.epage=590&rft.pages=587-590&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G40150.1&rft_dat=%3Cproquest_cross%3E2075663026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a412t-8325f62fa6def39ad8bad81e990da9e95a21c71e60a584cc23982eecd1c7f6073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075663026&rft_id=info:pmid/&rfr_iscdi=true |