Loading…

Clustering Patients with Tensor Decomposition

In this paper we present a method for the unsupervised clustering of high-dimensional binary data, with a special focus on electronic healthcare records. We present a robust and efficient heuristic to face this problem using tensor decomposition. We present the reasons why this approach is preferabl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-08
Main Authors: Ruffini, Matteo, Gavaldà, Ricard, Limón, Esther
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ruffini, Matteo
Gavaldà, Ricard
Limón, Esther
description In this paper we present a method for the unsupervised clustering of high-dimensional binary data, with a special focus on electronic healthcare records. We present a robust and efficient heuristic to face this problem using tensor decomposition. We present the reasons why this approach is preferable for tasks such as clustering patient records, to more commonly used distance-based methods. We run the algorithm on two datasets of healthcare records, obtaining clinically meaningful results.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075754897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075754897</sourcerecordid><originalsourceid>FETCH-proquest_journals_20757548973</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdc4pLS5JLcrMS1cISCzJTM0rKVYozyzJUAhJzSvOL1JwSU3Ozy3IL84syczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc1NzUxMLS3Nj4lQBAPnUMpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075754897</pqid></control><display><type>article</type><title>Clustering Patients with Tensor Decomposition</title><source>Publicly Available Content Database</source><creator>Ruffini, Matteo ; Gavaldà, Ricard ; Limón, Esther</creator><creatorcontrib>Ruffini, Matteo ; Gavaldà, Ricard ; Limón, Esther</creatorcontrib><description>In this paper we present a method for the unsupervised clustering of high-dimensional binary data, with a special focus on electronic healthcare records. We present a robust and efficient heuristic to face this problem using tensor decomposition. We present the reasons why this approach is preferable for tasks such as clustering patient records, to more commonly used distance-based methods. We run the algorithm on two datasets of healthcare records, obtaining clinically meaningful results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Binary data ; Clustering ; Decomposition ; Electronic health records ; Health care ; Mathematical analysis ; Tensors</subject><ispartof>arXiv.org, 2017-08</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075754897?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ruffini, Matteo</creatorcontrib><creatorcontrib>Gavaldà, Ricard</creatorcontrib><creatorcontrib>Limón, Esther</creatorcontrib><title>Clustering Patients with Tensor Decomposition</title><title>arXiv.org</title><description>In this paper we present a method for the unsupervised clustering of high-dimensional binary data, with a special focus on electronic healthcare records. We present a robust and efficient heuristic to face this problem using tensor decomposition. We present the reasons why this approach is preferable for tasks such as clustering patient records, to more commonly used distance-based methods. We run the algorithm on two datasets of healthcare records, obtaining clinically meaningful results.</description><subject>Algorithms</subject><subject>Binary data</subject><subject>Clustering</subject><subject>Decomposition</subject><subject>Electronic health records</subject><subject>Health care</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdc4pLS5JLcrMS1cISCzJTM0rKVYozyzJUAhJzSvOL1JwSU3Ozy3IL84syczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc1NzUxMLS3Nj4lQBAPnUMpo</recordid><startdate>20170829</startdate><enddate>20170829</enddate><creator>Ruffini, Matteo</creator><creator>Gavaldà, Ricard</creator><creator>Limón, Esther</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170829</creationdate><title>Clustering Patients with Tensor Decomposition</title><author>Ruffini, Matteo ; Gavaldà, Ricard ; Limón, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20757548973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Binary data</topic><topic>Clustering</topic><topic>Decomposition</topic><topic>Electronic health records</topic><topic>Health care</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruffini, Matteo</creatorcontrib><creatorcontrib>Gavaldà, Ricard</creatorcontrib><creatorcontrib>Limón, Esther</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruffini, Matteo</au><au>Gavaldà, Ricard</au><au>Limón, Esther</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Clustering Patients with Tensor Decomposition</atitle><jtitle>arXiv.org</jtitle><date>2017-08-29</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In this paper we present a method for the unsupervised clustering of high-dimensional binary data, with a special focus on electronic healthcare records. We present a robust and efficient heuristic to face this problem using tensor decomposition. We present the reasons why this approach is preferable for tasks such as clustering patient records, to more commonly used distance-based methods. We run the algorithm on two datasets of healthcare records, obtaining clinically meaningful results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075754897
source Publicly Available Content Database
subjects Algorithms
Binary data
Clustering
Decomposition
Electronic health records
Health care
Mathematical analysis
Tensors
title Clustering Patients with Tensor Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Clustering%20Patients%20with%20Tensor%20Decomposition&rft.jtitle=arXiv.org&rft.au=Ruffini,%20Matteo&rft.date=2017-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075754897%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20757548973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075754897&rft_id=info:pmid/&rfr_iscdi=true