Loading…
Ephemeral Context to Support Robust and Diverse Music Recommendations
While prior work on context-based music recommendation focused on fixed set of contexts (e.g. walking, driving, jogging), we propose to use multiple sensors and external data sources to describe momentary (ephemeral) context in a rich way with a very large number of possible states (e.g. jogging fas...
Saved in:
Published in: | arXiv.org 2017-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While prior work on context-based music recommendation focused on fixed set of contexts (e.g. walking, driving, jogging), we propose to use multiple sensors and external data sources to describe momentary (ephemeral) context in a rich way with a very large number of possible states (e.g. jogging fast along in downtown of Sydney under a heavy rain at night being tired and angry). With our approach, we address the problems which current approaches face: 1) a limited ability to infer context from missing or faulty sensor data; 2) an inability to use contextual information to support novel content discovery. |
---|---|
ISSN: | 2331-8422 |