Loading…
A parallel corpus of Python functions and documentation strings for automated code documentation and code generation
Automated documentation of programming source code and automated code generation from natural language are challenging tasks of both practical and scientific interest. Progress in these areas has been limited by the low availability of parallel corpora of code and natural language descriptions, whic...
Saved in:
Published in: | arXiv.org 2017-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Antonio Valerio Miceli Barone Sennrich, Rico |
description | Automated documentation of programming source code and automated code generation from natural language are challenging tasks of both practical and scientific interest. Progress in these areas has been limited by the low availability of parallel corpora of code and natural language descriptions, which tend to be small and constrained to specific domains. In this work we introduce a large and diverse parallel corpus of a hundred thousands Python functions with their documentation strings ("docstrings") generated by scraping open source repositories on GitHub. We describe baseline results for the code documentation and code generation tasks obtained by neural machine translation. We also experiment with data augmentation techniques to further increase the amount of training data. We release our datasets and processing scripts in order to stimulate research in these areas. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075853442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075853442</sourcerecordid><originalsourceid>FETCH-proquest_journals_20758534423</originalsourceid><addsrcrecordid>eNqNjD0LwjAURYMgWLT_4YFzISaN7SqiODq4l9AmtSXNq_kY_Pe2xcnJ6cK5594VSRjnh6zMGduQ1PueUsqOBROCJyScYJROGqMM1OjG6AE13N_hiRZ0tHXo0HqQtoEG6zgoG-SMwAfX2daDRgcyBhxkUM100agfcZ4uuFVWuYXtyFpL41X6zS3ZXy-P8y0bHb6i8qHqMTo7VRWjhSgFz3PG_7M-rKRNVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075853442</pqid></control><display><type>article</type><title>A parallel corpus of Python functions and documentation strings for automated code documentation and code generation</title><source>Publicly Available Content Database</source><creator>Antonio Valerio Miceli Barone ; Sennrich, Rico</creator><creatorcontrib>Antonio Valerio Miceli Barone ; Sennrich, Rico</creatorcontrib><description>Automated documentation of programming source code and automated code generation from natural language are challenging tasks of both practical and scientific interest. Progress in these areas has been limited by the low availability of parallel corpora of code and natural language descriptions, which tend to be small and constrained to specific domains. In this work we introduce a large and diverse parallel corpus of a hundred thousands Python functions with their documentation strings ("docstrings") generated by scraping open source repositories on GitHub. We describe baseline results for the code documentation and code generation tasks obtained by neural machine translation. We also experiment with data augmentation techniques to further increase the amount of training data. We release our datasets and processing scripts in order to stimulate research in these areas.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Documentation ; Domains ; Machine translation ; Natural language ; Natural language (computers) ; Repositories ; Scraping ; Source code ; Speech recognition ; Strings</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075853442?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Antonio Valerio Miceli Barone</creatorcontrib><creatorcontrib>Sennrich, Rico</creatorcontrib><title>A parallel corpus of Python functions and documentation strings for automated code documentation and code generation</title><title>arXiv.org</title><description>Automated documentation of programming source code and automated code generation from natural language are challenging tasks of both practical and scientific interest. Progress in these areas has been limited by the low availability of parallel corpora of code and natural language descriptions, which tend to be small and constrained to specific domains. In this work we introduce a large and diverse parallel corpus of a hundred thousands Python functions with their documentation strings ("docstrings") generated by scraping open source repositories on GitHub. We describe baseline results for the code documentation and code generation tasks obtained by neural machine translation. We also experiment with data augmentation techniques to further increase the amount of training data. We release our datasets and processing scripts in order to stimulate research in these areas.</description><subject>Automation</subject><subject>Documentation</subject><subject>Domains</subject><subject>Machine translation</subject><subject>Natural language</subject><subject>Natural language (computers)</subject><subject>Repositories</subject><subject>Scraping</subject><subject>Source code</subject><subject>Speech recognition</subject><subject>Strings</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjD0LwjAURYMgWLT_4YFzISaN7SqiODq4l9AmtSXNq_kY_Pe2xcnJ6cK5594VSRjnh6zMGduQ1PueUsqOBROCJyScYJROGqMM1OjG6AE13N_hiRZ0tHXo0HqQtoEG6zgoG-SMwAfX2daDRgcyBhxkUM100agfcZ4uuFVWuYXtyFpL41X6zS3ZXy-P8y0bHb6i8qHqMTo7VRWjhSgFz3PG_7M-rKRNVA</recordid><startdate>20170707</startdate><enddate>20170707</enddate><creator>Antonio Valerio Miceli Barone</creator><creator>Sennrich, Rico</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170707</creationdate><title>A parallel corpus of Python functions and documentation strings for automated code documentation and code generation</title><author>Antonio Valerio Miceli Barone ; Sennrich, Rico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20758534423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automation</topic><topic>Documentation</topic><topic>Domains</topic><topic>Machine translation</topic><topic>Natural language</topic><topic>Natural language (computers)</topic><topic>Repositories</topic><topic>Scraping</topic><topic>Source code</topic><topic>Speech recognition</topic><topic>Strings</topic><toplevel>online_resources</toplevel><creatorcontrib>Antonio Valerio Miceli Barone</creatorcontrib><creatorcontrib>Sennrich, Rico</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonio Valerio Miceli Barone</au><au>Sennrich, Rico</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A parallel corpus of Python functions and documentation strings for automated code documentation and code generation</atitle><jtitle>arXiv.org</jtitle><date>2017-07-07</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Automated documentation of programming source code and automated code generation from natural language are challenging tasks of both practical and scientific interest. Progress in these areas has been limited by the low availability of parallel corpora of code and natural language descriptions, which tend to be small and constrained to specific domains. In this work we introduce a large and diverse parallel corpus of a hundred thousands Python functions with their documentation strings ("docstrings") generated by scraping open source repositories on GitHub. We describe baseline results for the code documentation and code generation tasks obtained by neural machine translation. We also experiment with data augmentation techniques to further increase the amount of training data. We release our datasets and processing scripts in order to stimulate research in these areas.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075853442 |
source | Publicly Available Content Database |
subjects | Automation Documentation Domains Machine translation Natural language Natural language (computers) Repositories Scraping Source code Speech recognition Strings |
title | A parallel corpus of Python functions and documentation strings for automated code documentation and code generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20parallel%20corpus%20of%20Python%20functions%20and%20documentation%20strings%20for%20automated%20code%20documentation%20and%20code%20generation&rft.jtitle=arXiv.org&rft.au=Antonio%20Valerio%20Miceli%20Barone&rft.date=2017-07-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075853442%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20758534423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075853442&rft_id=info:pmid/&rfr_iscdi=true |