Loading…

Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets

Employing the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tuneable nanomaterials. In order to benefit from both concepts, Rashba spin-orbit interac...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-06
Main Authors: Mohammad Mehdi Ramin Moayed, Bielewicz, Thomas, Zollner, Martin Sebastian, Herrmann, Carmen, Klinke, Christian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mohammad Mehdi Ramin Moayed
Bielewicz, Thomas
Zollner, Martin Sebastian
Herrmann, Carmen
Klinke, Christian
description Employing the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tuneable nanomaterials. In order to benefit from both concepts, Rashba spin-orbit interaction has been investigated in colloidal lead sulphide nanosheets by electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets possess rock salt crystal structure, which is centrosymmetric. The symmetry can be broken by quantum confinement, asymmetric vertical interfaces and a gate electric field leading to Rashba-type band splitting in momentum space at the M points, which results in an unconventional selection mechanism for the excitation of the carriers. The effect, which is supported by simulations of the band structure using density functional theory, can be tuned by the gate electric field and by the thickness of the sheets. Spin-related electrical transport phenomena in colloidal materials open a promising pathway towards future inexpensive spintronic devices.
doi_str_mv 10.48550/arxiv.1706.05315
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075874069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075874069</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-fb1bf79427c9929d82a6a43a41480f470732f509c31164b4e69201c925b1a9433</originalsourceid><addsrcrecordid>eNotjU1LxDAURYMgOIzzA9wFXLe-vCRNs5TBLxgQpPvy2qY2Q2lq0qo_36Ku7oVzOZexGwG5KrWGO4rf_jMXBooctBT6gu1QSpGVCvGKHVI6AwAWBrWWO1ZX4Ytil3gbxjH4jkaeZj8tMUy-TXwZYljfB_5GaWjoF2UhNn7h28ZFahcfpq3z0VHH0zrOg-8cn2gKaXBuSdfssqcxucN_7ln1-FAdn7PT69PL8f6UkUab9Y1oemMVmtZatF2JVJCSpIQqoVcGjMReg22lEIVqlCssgmgt6kaQVVLu2e2fdo7hY3Vpqc9hjdP2WCMYXRoFhZU_VvlV_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075874069</pqid></control><display><type>article</type><title>Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets</title><source>Publicly Available Content (ProQuest)</source><creator>Mohammad Mehdi Ramin Moayed ; Bielewicz, Thomas ; Zollner, Martin Sebastian ; Herrmann, Carmen ; Klinke, Christian</creator><creatorcontrib>Mohammad Mehdi Ramin Moayed ; Bielewicz, Thomas ; Zollner, Martin Sebastian ; Herrmann, Carmen ; Klinke, Christian</creatorcontrib><description>Employing the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tuneable nanomaterials. In order to benefit from both concepts, Rashba spin-orbit interaction has been investigated in colloidal lead sulphide nanosheets by electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets possess rock salt crystal structure, which is centrosymmetric. The symmetry can be broken by quantum confinement, asymmetric vertical interfaces and a gate electric field leading to Rashba-type band splitting in momentum space at the M points, which results in an unconventional selection mechanism for the excitation of the carriers. The effect, which is supported by simulations of the band structure using density functional theory, can be tuned by the gate electric field and by the thickness of the sheets. Spin-related electrical transport phenomena in colloidal materials open a promising pathway towards future inexpensive spintronic devices.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1706.05315</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical synthesis ; Colloid chemistry ; Crystal structure ; Current carriers ; Density functional theory ; Electric fields ; Electrical measurement ; Electronic devices ; Halites ; Lead sulfides ; Nanomaterials ; Nanosheets ; Organic chemistry ; Quantum confinement ; Spin-orbit interactions ; Spintronics ; Transport phenomena</subject><ispartof>arXiv.org, 2017-06</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075874069?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mohammad Mehdi Ramin Moayed</creatorcontrib><creatorcontrib>Bielewicz, Thomas</creatorcontrib><creatorcontrib>Zollner, Martin Sebastian</creatorcontrib><creatorcontrib>Herrmann, Carmen</creatorcontrib><creatorcontrib>Klinke, Christian</creatorcontrib><title>Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets</title><title>arXiv.org</title><description>Employing the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tuneable nanomaterials. In order to benefit from both concepts, Rashba spin-orbit interaction has been investigated in colloidal lead sulphide nanosheets by electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets possess rock salt crystal structure, which is centrosymmetric. The symmetry can be broken by quantum confinement, asymmetric vertical interfaces and a gate electric field leading to Rashba-type band splitting in momentum space at the M points, which results in an unconventional selection mechanism for the excitation of the carriers. The effect, which is supported by simulations of the band structure using density functional theory, can be tuned by the gate electric field and by the thickness of the sheets. Spin-related electrical transport phenomena in colloidal materials open a promising pathway towards future inexpensive spintronic devices.</description><subject>Chemical synthesis</subject><subject>Colloid chemistry</subject><subject>Crystal structure</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electrical measurement</subject><subject>Electronic devices</subject><subject>Halites</subject><subject>Lead sulfides</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>Organic chemistry</subject><subject>Quantum confinement</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Transport phenomena</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LxDAURYMgOIzzA9wFXLe-vCRNs5TBLxgQpPvy2qY2Q2lq0qo_36Ku7oVzOZexGwG5KrWGO4rf_jMXBooctBT6gu1QSpGVCvGKHVI6AwAWBrWWO1ZX4Ytil3gbxjH4jkaeZj8tMUy-TXwZYljfB_5GaWjoF2UhNn7h28ZFahcfpq3z0VHH0zrOg-8cn2gKaXBuSdfssqcxucN_7ln1-FAdn7PT69PL8f6UkUab9Y1oemMVmtZatF2JVJCSpIQqoVcGjMReg22lEIVqlCssgmgt6kaQVVLu2e2fdo7hY3Vpqc9hjdP2WCMYXRoFhZU_VvlV_g</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Mohammad Mehdi Ramin Moayed</creator><creator>Bielewicz, Thomas</creator><creator>Zollner, Martin Sebastian</creator><creator>Herrmann, Carmen</creator><creator>Klinke, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170616</creationdate><title>Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets</title><author>Mohammad Mehdi Ramin Moayed ; Bielewicz, Thomas ; Zollner, Martin Sebastian ; Herrmann, Carmen ; Klinke, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-fb1bf79427c9929d82a6a43a41480f470732f509c31164b4e69201c925b1a9433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical synthesis</topic><topic>Colloid chemistry</topic><topic>Crystal structure</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electrical measurement</topic><topic>Electronic devices</topic><topic>Halites</topic><topic>Lead sulfides</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>Organic chemistry</topic><topic>Quantum confinement</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Transport phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammad Mehdi Ramin Moayed</creatorcontrib><creatorcontrib>Bielewicz, Thomas</creatorcontrib><creatorcontrib>Zollner, Martin Sebastian</creatorcontrib><creatorcontrib>Herrmann, Carmen</creatorcontrib><creatorcontrib>Klinke, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad Mehdi Ramin Moayed</au><au>Bielewicz, Thomas</au><au>Zollner, Martin Sebastian</au><au>Herrmann, Carmen</au><au>Klinke, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets</atitle><jtitle>arXiv.org</jtitle><date>2017-06-16</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Employing the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tuneable nanomaterials. In order to benefit from both concepts, Rashba spin-orbit interaction has been investigated in colloidal lead sulphide nanosheets by electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets possess rock salt crystal structure, which is centrosymmetric. The symmetry can be broken by quantum confinement, asymmetric vertical interfaces and a gate electric field leading to Rashba-type band splitting in momentum space at the M points, which results in an unconventional selection mechanism for the excitation of the carriers. The effect, which is supported by simulations of the band structure using density functional theory, can be tuned by the gate electric field and by the thickness of the sheets. Spin-related electrical transport phenomena in colloidal materials open a promising pathway towards future inexpensive spintronic devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1706.05315</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075874069
source Publicly Available Content (ProQuest)
subjects Chemical synthesis
Colloid chemistry
Crystal structure
Current carriers
Density functional theory
Electric fields
Electrical measurement
Electronic devices
Halites
Lead sulfides
Nanomaterials
Nanosheets
Organic chemistry
Quantum confinement
Spin-orbit interactions
Spintronics
Transport phenomena
title Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20colloidal%20spintronics%20through%20Rashba%20spin-orbit%20interaction%20in%20lead%20sulphide%20nanosheets&rft.jtitle=arXiv.org&rft.au=Mohammad%20Mehdi%20Ramin%20Moayed&rft.date=2017-06-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1706.05315&rft_dat=%3Cproquest%3E2075874069%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-fb1bf79427c9929d82a6a43a41480f470732f509c31164b4e69201c925b1a9433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075874069&rft_id=info:pmid/&rfr_iscdi=true