Loading…

Experimental Demonstration of an Electride as a 2D Material

Because of their loosely bound electrons, electrides offer physical properties useful in chemical synthesis and electronics. For these applications and others, nano-sized electrides offer advantages, but to-date no electride has been synthesized as a nanomaterial. We demonstrate experimentally that...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-06
Main Authors: Druffel, Daniel L, Kuntz, Kaci L, Woomer, Adam H, Alcorn, Francis M, Hu, Jun, Donley, Carrie L, Warren, Scott C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because of their loosely bound electrons, electrides offer physical properties useful in chemical synthesis and electronics. For these applications and others, nano-sized electrides offer advantages, but to-date no electride has been synthesized as a nanomaterial. We demonstrate experimentally that Ca\(_2\)N, a layered electride in which layers of atoms are separated by layers of a 2D electron gas (2DEG), can be exfoliated into two-dimensional (2D) nanosheets using liquid exfoliation. The 2D flakes are stable in a nitrogen atmosphere or in select organic solvents for at least one month. Electron microscopy and elemental analysis reveal that the 2D flakes retain the crystal structure and stoichiometry of the parent 3D Ca\(_2\)N. In addition, the 2D flakes exhibit metallic character and an optical response that agrees with DFT calculations. Together these findings suggest that the 2DEG is preserved in the 2D material. With this work, we bring electrides into the nano-regime and experimentally demonstrate a 2D electride, Ca\(_2\)N.
ISSN:2331-8422
DOI:10.48550/arxiv.1706.02774