Loading…

Network Capacity Bound for Personalized PageRank in Multimodal Networks

In a former paper the concept of Bipartite PageRank was introduced and a theorem on the limit of authority flowing between nodes for personalized PageRank has been generalized. In this paper we want to extend those results to multimodal networks. In particular we deal with a hypergraph type that may...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Kłopotek, M A, Wierzchoń, S T, Kłopotek, R A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kłopotek, M A
Wierzchoń, S T
Kłopotek, R A
description In a former paper the concept of Bipartite PageRank was introduced and a theorem on the limit of authority flowing between nodes for personalized PageRank has been generalized. In this paper we want to extend those results to multimodal networks. In particular we deal with a hypergraph type that may be used for describing multimodal network where a hyperlink connects nodes from each of the modalities. We introduce a generalisation of PageRank for such graphs and define the respective random walk model that can be used for computations. We state and prove theorems on the limit of outflow of authority for cases where individual modalities have identical and distinct damping factors.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075893389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075893389</sourcerecordid><originalsourceid>FETCH-proquest_journals_20758933893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw90stKc8vylZwTixITM4sqVRwyi_NS1FIyy9SCEgtKs7PS8zJrEpNUQhITE8NSszLVsjMU_AtzSnJzM1PScxRgGov5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMOK440MzE0tLI2NgZg4VQAHCjvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075893389</pqid></control><display><type>article</type><title>Network Capacity Bound for Personalized PageRank in Multimodal Networks</title><source>Publicly Available Content Database</source><creator>Kłopotek, M A ; Wierzchoń, S T ; Kłopotek, R A</creator><creatorcontrib>Kłopotek, M A ; Wierzchoń, S T ; Kłopotek, R A</creatorcontrib><description>In a former paper the concept of Bipartite PageRank was introduced and a theorem on the limit of authority flowing between nodes for personalized PageRank has been generalized. In this paper we want to extend those results to multimodal networks. In particular we deal with a hypergraph type that may be used for describing multimodal network where a hyperlink connects nodes from each of the modalities. We introduce a generalisation of PageRank for such graphs and define the respective random walk model that can be used for computations. We state and prove theorems on the limit of outflow of authority for cases where individual modalities have identical and distinct damping factors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Damping ; Nodes ; Outflow ; Random walk ; Search engines ; Theorems</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075893389?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Kłopotek, M A</creatorcontrib><creatorcontrib>Wierzchoń, S T</creatorcontrib><creatorcontrib>Kłopotek, R A</creatorcontrib><title>Network Capacity Bound for Personalized PageRank in Multimodal Networks</title><title>arXiv.org</title><description>In a former paper the concept of Bipartite PageRank was introduced and a theorem on the limit of authority flowing between nodes for personalized PageRank has been generalized. In this paper we want to extend those results to multimodal networks. In particular we deal with a hypergraph type that may be used for describing multimodal network where a hyperlink connects nodes from each of the modalities. We introduce a generalisation of PageRank for such graphs and define the respective random walk model that can be used for computations. We state and prove theorems on the limit of outflow of authority for cases where individual modalities have identical and distinct damping factors.</description><subject>Damping</subject><subject>Nodes</subject><subject>Outflow</subject><subject>Random walk</subject><subject>Search engines</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw90stKc8vylZwTixITM4sqVRwyi_NS1FIyy9SCEgtKs7PS8zJrEpNUQhITE8NSszLVsjMU_AtzSnJzM1PScxRgGov5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMOK440MzE0tLI2NgZg4VQAHCjvU</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Kłopotek, M A</creator><creator>Wierzchoń, S T</creator><creator>Kłopotek, R A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230627</creationdate><title>Network Capacity Bound for Personalized PageRank in Multimodal Networks</title><author>Kłopotek, M A ; Wierzchoń, S T ; Kłopotek, R A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20758933893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Damping</topic><topic>Nodes</topic><topic>Outflow</topic><topic>Random walk</topic><topic>Search engines</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Kłopotek, M A</creatorcontrib><creatorcontrib>Wierzchoń, S T</creatorcontrib><creatorcontrib>Kłopotek, R A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kłopotek, M A</au><au>Wierzchoń, S T</au><au>Kłopotek, R A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Network Capacity Bound for Personalized PageRank in Multimodal Networks</atitle><jtitle>arXiv.org</jtitle><date>2023-06-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In a former paper the concept of Bipartite PageRank was introduced and a theorem on the limit of authority flowing between nodes for personalized PageRank has been generalized. In this paper we want to extend those results to multimodal networks. In particular we deal with a hypergraph type that may be used for describing multimodal network where a hyperlink connects nodes from each of the modalities. We introduce a generalisation of PageRank for such graphs and define the respective random walk model that can be used for computations. We state and prove theorems on the limit of outflow of authority for cases where individual modalities have identical and distinct damping factors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075893389
source Publicly Available Content Database
subjects Damping
Nodes
Outflow
Random walk
Search engines
Theorems
title Network Capacity Bound for Personalized PageRank in Multimodal Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Network%20Capacity%20Bound%20for%20Personalized%20PageRank%20in%20Multimodal%20Networks&rft.jtitle=arXiv.org&rft.au=K%C5%82opotek,%20M%20A&rft.date=2023-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2075893389%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20758933893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075893389&rft_id=info:pmid/&rfr_iscdi=true