Loading…
Solving the quantum many-body problem via correlations measured with a momentum microscope
In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation/annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here we demonstrate...
Saved in:
Published in: | arXiv.org 2017-06 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hodgman, Sean S Khakimov, Roman I Lewis-Swan, Robert J Truscott, Andrew G Kheruntsyan, Karen V |
description | In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation/annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here we demonstrate this paradigm by measuring multi-particle momentum correlations up to third order between ultracold helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system|the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multi-particle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localisation. |
doi_str_mv | 10.48550/arxiv.1702.03617 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075933197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075933197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-fcbe74eab7335cc1e04dc27fa3a8a580828afcb49dfd0e8b72569ac564d0efb73</originalsourceid><addsrcrecordid>eNotT7tqwzAUFYVCQ5oP6CbobFfWw5LHEvqCQIdm6hKu5etGwbYSyXabv68gmQ4HzpOQh4Ll0ijFniD8uTkvNOM5E2Whb8iCC1FkRnJ-R1YxHhhjvNRcKbEg31--m93wQ8c90tMEwzj1tIfhnNW-OdNj8HWHPZ0dUOtDwA5G54dIe4Q4BWzorxv3FGjve7x4nQ0-Wn_Ee3LbQhdxdcUl2b6-bNfv2ebz7WP9vMlAcZ21tkYtEWothLK2QCYby3ULAgwowww3kDSyatqGoanT7rICq0qZaJtcS_J4iU1bTxPGcXfwUxhS444zrar0vdLiH9_eVoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075933197</pqid></control><display><type>article</type><title>Solving the quantum many-body problem via correlations measured with a momentum microscope</title><source>Publicly Available Content Database</source><creator>Hodgman, Sean S ; Khakimov, Roman I ; Lewis-Swan, Robert J ; Truscott, Andrew G ; Kheruntsyan, Karen V</creator><creatorcontrib>Hodgman, Sean S ; Khakimov, Roman I ; Lewis-Swan, Robert J ; Truscott, Andrew G ; Kheruntsyan, Karen V</creatorcontrib><description>In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation/annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here we demonstrate this paradigm by measuring multi-particle momentum correlations up to third order between ultracold helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system|the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multi-particle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localisation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1702.03617</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bose-Einstein condensates ; Correlation analysis ; Helium ; Helium atoms ; Many body interactions ; Momentum ; Unconventional superconductivity ; Wave scattering</subject><ispartof>arXiv.org, 2017-06</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075933197?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Hodgman, Sean S</creatorcontrib><creatorcontrib>Khakimov, Roman I</creatorcontrib><creatorcontrib>Lewis-Swan, Robert J</creatorcontrib><creatorcontrib>Truscott, Andrew G</creatorcontrib><creatorcontrib>Kheruntsyan, Karen V</creatorcontrib><title>Solving the quantum many-body problem via correlations measured with a momentum microscope</title><title>arXiv.org</title><description>In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation/annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here we demonstrate this paradigm by measuring multi-particle momentum correlations up to third order between ultracold helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system|the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multi-particle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localisation.</description><subject>Bose-Einstein condensates</subject><subject>Correlation analysis</subject><subject>Helium</subject><subject>Helium atoms</subject><subject>Many body interactions</subject><subject>Momentum</subject><subject>Unconventional superconductivity</subject><subject>Wave scattering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT7tqwzAUFYVCQ5oP6CbobFfWw5LHEvqCQIdm6hKu5etGwbYSyXabv68gmQ4HzpOQh4Ll0ijFniD8uTkvNOM5E2Whb8iCC1FkRnJ-R1YxHhhjvNRcKbEg31--m93wQ8c90tMEwzj1tIfhnNW-OdNj8HWHPZ0dUOtDwA5G54dIe4Q4BWzorxv3FGjve7x4nQ0-Wn_Ee3LbQhdxdcUl2b6-bNfv2ebz7WP9vMlAcZ21tkYtEWothLK2QCYby3ULAgwowww3kDSyatqGoanT7rICq0qZaJtcS_J4iU1bTxPGcXfwUxhS444zrar0vdLiH9_eVoQ</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Hodgman, Sean S</creator><creator>Khakimov, Roman I</creator><creator>Lewis-Swan, Robert J</creator><creator>Truscott, Andrew G</creator><creator>Kheruntsyan, Karen V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170627</creationdate><title>Solving the quantum many-body problem via correlations measured with a momentum microscope</title><author>Hodgman, Sean S ; Khakimov, Roman I ; Lewis-Swan, Robert J ; Truscott, Andrew G ; Kheruntsyan, Karen V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-fcbe74eab7335cc1e04dc27fa3a8a580828afcb49dfd0e8b72569ac564d0efb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bose-Einstein condensates</topic><topic>Correlation analysis</topic><topic>Helium</topic><topic>Helium atoms</topic><topic>Many body interactions</topic><topic>Momentum</topic><topic>Unconventional superconductivity</topic><topic>Wave scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Hodgman, Sean S</creatorcontrib><creatorcontrib>Khakimov, Roman I</creatorcontrib><creatorcontrib>Lewis-Swan, Robert J</creatorcontrib><creatorcontrib>Truscott, Andrew G</creatorcontrib><creatorcontrib>Kheruntsyan, Karen V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodgman, Sean S</au><au>Khakimov, Roman I</au><au>Lewis-Swan, Robert J</au><au>Truscott, Andrew G</au><au>Kheruntsyan, Karen V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the quantum many-body problem via correlations measured with a momentum microscope</atitle><jtitle>arXiv.org</jtitle><date>2017-06-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation/annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here we demonstrate this paradigm by measuring multi-particle momentum correlations up to third order between ultracold helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system|the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multi-particle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localisation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1702.03617</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075933197 |
source | Publicly Available Content Database |
subjects | Bose-Einstein condensates Correlation analysis Helium Helium atoms Many body interactions Momentum Unconventional superconductivity Wave scattering |
title | Solving the quantum many-body problem via correlations measured with a momentum microscope |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20quantum%20many-body%20problem%20via%20correlations%20measured%20with%20a%20momentum%20microscope&rft.jtitle=arXiv.org&rft.au=Hodgman,%20Sean%20S&rft.date=2017-06-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1702.03617&rft_dat=%3Cproquest%3E2075933197%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-fcbe74eab7335cc1e04dc27fa3a8a580828afcb49dfd0e8b72569ac564d0efb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075933197&rft_id=info:pmid/&rfr_iscdi=true |