Loading…
Noise-Dependent Adaption of the Wiener Filter for the GPS Position Time Series
Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used i...
Saved in:
Published in: | Mathematical geosciences 2019-01, Vol.51 (1), p.53-73 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Various methods have been used to model the time-varying curves within the global positioning system (GPS) position time series. However, very few consider the level of noise a priori before the seasonal curves are estimated. This study is the first to consider the Wiener filter (WF), already used in geodesy to denoise gravity records, to model the seasonal signals in the GPS position time series. To model the time-varying part of the signal, a first-order autoregressive process is employed. The WF is then adapted to the noise level of the data to model only those time variabilities which are significant. Synthetic and real GPS data is used to demonstrate that this variation of the WF leaves the underlying noise properties intact and provides optimal modeling of seasonal signals. This methodology is referred to as the adaptive WF (AWF) and is both easy to implement and fast, due to the use of the fast Fourier transform method. |
---|---|
ISSN: | 1874-8961 1874-8953 |
DOI: | 10.1007/s11004-018-9760-z |