Loading…

METAPHOR: Probability density estimation for machine learning based photometric redshifts

We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-03
Main Authors: Amaro, Valeria, Cavuoti, Stefano, Brescia, Massimo, Vellucci, Civita, Tortora, Crescenzo, Longo, Giuseppe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Amaro, Valeria
Cavuoti, Stefano
Brescia, Massimo
Vellucci, Civita
Tortora, Crescenzo
Longo, Giuseppe
description We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).
doi_str_mv 10.48550/arxiv.1703.02292
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075944814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075944814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-7780e9a82b247309c9d1bc86500c2a67e63dd7d7ab1ba5c140f8a11549cab4683</originalsourceid><addsrcrecordid>eNotjs1OAjEYABsTEwnyAN6aeF5sv7bbrjdCUEgwEMPFE_n6s1ICW2wXo28vRk9zmxlC7jgbS6MUe8D8FT_HXDMxZgANXJEBCMErIwFuyKiUPWMMag1KiQF5e5ltJuv56vWRrnOyaOMh9t_Uh678MpQ-HrGPqaNtyvSIbhe7QA8Bcxe7d2qxBE9Pu9SnY-hzdDQHX3ax7cstuW7xUMLon0OyeZptpvNquXpeTCfLChXISmvDQoMGLEgtWOMaz60ztWLMAdY61MJ77TVablE5LllrkHMlG4dW1kYMyf2f9pTTx_nyu92nc-4uxS0wrRopDZfiB0jbU9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075944814</pqid></control><display><type>article</type><title>METAPHOR: Probability density estimation for machine learning based photometric redshifts</title><source>Publicly Available Content (ProQuest)</source><creator>Amaro, Valeria ; Cavuoti, Stefano ; Brescia, Massimo ; Vellucci, Civita ; Tortora, Crescenzo ; Longo, Giuseppe</creator><creatorcontrib>Amaro, Valeria ; Cavuoti, Stefano ; Brescia, Massimo ; Vellucci, Civita ; Tortora, Crescenzo ; Longo, Giuseppe</creatorcontrib><description>We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1703.02292</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Galaxies ; Machine learning ; Neural networks ; Photometry ; Workflow</subject><ispartof>arXiv.org, 2017-03</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075944814?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Amaro, Valeria</creatorcontrib><creatorcontrib>Cavuoti, Stefano</creatorcontrib><creatorcontrib>Brescia, Massimo</creatorcontrib><creatorcontrib>Vellucci, Civita</creatorcontrib><creatorcontrib>Tortora, Crescenzo</creatorcontrib><creatorcontrib>Longo, Giuseppe</creatorcontrib><title>METAPHOR: Probability density estimation for machine learning based photometric redshifts</title><title>arXiv.org</title><description>We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).</description><subject>Galaxies</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Photometry</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1OAjEYABsTEwnyAN6aeF5sv7bbrjdCUEgwEMPFE_n6s1ICW2wXo28vRk9zmxlC7jgbS6MUe8D8FT_HXDMxZgANXJEBCMErIwFuyKiUPWMMag1KiQF5e5ltJuv56vWRrnOyaOMh9t_Uh678MpQ-HrGPqaNtyvSIbhe7QA8Bcxe7d2qxBE9Pu9SnY-hzdDQHX3ax7cstuW7xUMLon0OyeZptpvNquXpeTCfLChXISmvDQoMGLEgtWOMaz60ztWLMAdY61MJ77TVablE5LllrkHMlG4dW1kYMyf2f9pTTx_nyu92nc-4uxS0wrRopDZfiB0jbU9Q</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Amaro, Valeria</creator><creator>Cavuoti, Stefano</creator><creator>Brescia, Massimo</creator><creator>Vellucci, Civita</creator><creator>Tortora, Crescenzo</creator><creator>Longo, Giuseppe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170307</creationdate><title>METAPHOR: Probability density estimation for machine learning based photometric redshifts</title><author>Amaro, Valeria ; Cavuoti, Stefano ; Brescia, Massimo ; Vellucci, Civita ; Tortora, Crescenzo ; Longo, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-7780e9a82b247309c9d1bc86500c2a67e63dd7d7ab1ba5c140f8a11549cab4683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Galaxies</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Photometry</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Amaro, Valeria</creatorcontrib><creatorcontrib>Cavuoti, Stefano</creatorcontrib><creatorcontrib>Brescia, Massimo</creatorcontrib><creatorcontrib>Vellucci, Civita</creatorcontrib><creatorcontrib>Tortora, Crescenzo</creatorcontrib><creatorcontrib>Longo, Giuseppe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaro, Valeria</au><au>Cavuoti, Stefano</au><au>Brescia, Massimo</au><au>Vellucci, Civita</au><au>Tortora, Crescenzo</au><au>Longo, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>METAPHOR: Probability density estimation for machine learning based photometric redshifts</atitle><jtitle>arXiv.org</jtitle><date>2017-03-07</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1703.02292</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075944814
source Publicly Available Content (ProQuest)
subjects Galaxies
Machine learning
Neural networks
Photometry
Workflow
title METAPHOR: Probability density estimation for machine learning based photometric redshifts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=METAPHOR:%20Probability%20density%20estimation%20for%20machine%20learning%20based%20photometric%20redshifts&rft.jtitle=arXiv.org&rft.au=Amaro,%20Valeria&rft.date=2017-03-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1703.02292&rft_dat=%3Cproquest%3E2075944814%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-7780e9a82b247309c9d1bc86500c2a67e63dd7d7ab1ba5c140f8a11549cab4683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075944814&rft_id=info:pmid/&rfr_iscdi=true