Loading…
Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars
Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material t...
Saved in:
Published in: | arXiv.org 2017-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sengar, Rahul Tauris, Thomas M Langer, Norbert Istrate, Alina G |
description | Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period. |
doi_str_mv | 10.48550/arxiv.1704.08260 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075964262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075964262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-2670d1dcbea300f75c080cce396be39ee2fd497dd1be25a7ee1ed01efaface833</originalsourceid><addsrcrecordid>eNotjk1LAzEYhIMgWGp_gLeA59Q3yWZ3e5TiFxS99OCtZJM3uiW7aZNsa_-9Ab3MHIZnZgi547CsWqXgQcef_rTkDVRLaEUNV2QmpOSsrYS4IYuU9gAg6kYoJWfk-B5O6OkQLHrfj180ODr5HDUzYThok-kni_pCu37U8ULxFPyU-zBSRlPWnUc66JRoAcbkMFIXw0DP331Gas86uhIFOuKUY2EKEdMtuXbaJ1z8-5xsn5-261e2-Xh5Wz9umFZCsHIQLLemQy0BXKMMtGAMylXdFUEUzlarxlreoVC6QeRogaPTThtspZyT-7_aQwzHCVPe7cMUx7K4E9CoVV2JWshfh1Neqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075964262</pqid></control><display><type>article</type><title>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</title><source>Publicly Available Content (ProQuest)</source><creator>Sengar, Rahul ; Tauris, Thomas M ; Langer, Norbert ; Istrate, Alina G</creator><creatorcontrib>Sengar, Rahul ; Tauris, Thomas M ; Langer, Norbert ; Istrate, Alina G</creatorcontrib><description>Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1704.08260</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binary stars ; Damping ; Deposition ; Helium ; Mass transfer ; Mathematical models ; Millisecond pulsars ; Neutron stars ; Neutrons ; Orbits ; Stellar evolution ; White dwarf stars ; X ray binaries ; X ray stars</subject><ispartof>arXiv.org, 2017-05</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075964262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sengar, Rahul</creatorcontrib><creatorcontrib>Tauris, Thomas M</creatorcontrib><creatorcontrib>Langer, Norbert</creatorcontrib><creatorcontrib>Istrate, Alina G</creatorcontrib><title>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</title><title>arXiv.org</title><description>Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period.</description><subject>Binary stars</subject><subject>Damping</subject><subject>Deposition</subject><subject>Helium</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Millisecond pulsars</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Orbits</subject><subject>Stellar evolution</subject><subject>White dwarf stars</subject><subject>X ray binaries</subject><subject>X ray stars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEYhIMgWGp_gLeA59Q3yWZ3e5TiFxS99OCtZJM3uiW7aZNsa_-9Ab3MHIZnZgi547CsWqXgQcef_rTkDVRLaEUNV2QmpOSsrYS4IYuU9gAg6kYoJWfk-B5O6OkQLHrfj180ODr5HDUzYThok-kni_pCu37U8ULxFPyU-zBSRlPWnUc66JRoAcbkMFIXw0DP331Gas86uhIFOuKUY2EKEdMtuXbaJ1z8-5xsn5-261e2-Xh5Wz9umFZCsHIQLLemQy0BXKMMtGAMylXdFUEUzlarxlreoVC6QeRogaPTThtspZyT-7_aQwzHCVPe7cMUx7K4E9CoVV2JWshfh1Neqw</recordid><startdate>20170531</startdate><enddate>20170531</enddate><creator>Sengar, Rahul</creator><creator>Tauris, Thomas M</creator><creator>Langer, Norbert</creator><creator>Istrate, Alina G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170531</creationdate><title>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</title><author>Sengar, Rahul ; Tauris, Thomas M ; Langer, Norbert ; Istrate, Alina G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-2670d1dcbea300f75c080cce396be39ee2fd497dd1be25a7ee1ed01efaface833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binary stars</topic><topic>Damping</topic><topic>Deposition</topic><topic>Helium</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Millisecond pulsars</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Orbits</topic><topic>Stellar evolution</topic><topic>White dwarf stars</topic><topic>X ray binaries</topic><topic>X ray stars</topic><toplevel>online_resources</toplevel><creatorcontrib>Sengar, Rahul</creatorcontrib><creatorcontrib>Tauris, Thomas M</creatorcontrib><creatorcontrib>Langer, Norbert</creatorcontrib><creatorcontrib>Istrate, Alina G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengar, Rahul</au><au>Tauris, Thomas M</au><au>Langer, Norbert</au><au>Istrate, Alina G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</atitle><jtitle>arXiv.org</jtitle><date>2017-05-31</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1704.08260</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2075964262 |
source | Publicly Available Content (ProQuest) |
subjects | Binary stars Damping Deposition Helium Mass transfer Mathematical models Millisecond pulsars Neutron stars Neutrons Orbits Stellar evolution White dwarf stars X ray binaries X ray stars |
title | Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20modelling%20of%20ultra-compact%20X-ray%20binary%20evolution%20-%20stable%20mass%20transfer%20from%20white%20dwarfs%20to%20neutron%20stars&rft.jtitle=arXiv.org&rft.au=Sengar,%20Rahul&rft.date=2017-05-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1704.08260&rft_dat=%3Cproquest%3E2075964262%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-2670d1dcbea300f75c080cce396be39ee2fd497dd1be25a7ee1ed01efaface833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075964262&rft_id=info:pmid/&rfr_iscdi=true |