Loading…

Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-05
Main Authors: Sengar, Rahul, Tauris, Thomas M, Langer, Norbert, Istrate, Alina G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sengar, Rahul
Tauris, Thomas M
Langer, Norbert
Istrate, Alina G
description Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period.
doi_str_mv 10.48550/arxiv.1704.08260
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2075964262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075964262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-2670d1dcbea300f75c080cce396be39ee2fd497dd1be25a7ee1ed01efaface833</originalsourceid><addsrcrecordid>eNotjk1LAzEYhIMgWGp_gLeA59Q3yWZ3e5TiFxS99OCtZJM3uiW7aZNsa_-9Ab3MHIZnZgi547CsWqXgQcef_rTkDVRLaEUNV2QmpOSsrYS4IYuU9gAg6kYoJWfk-B5O6OkQLHrfj180ODr5HDUzYThok-kni_pCu37U8ULxFPyU-zBSRlPWnUc66JRoAcbkMFIXw0DP331Gas86uhIFOuKUY2EKEdMtuXbaJ1z8-5xsn5-261e2-Xh5Wz9umFZCsHIQLLemQy0BXKMMtGAMylXdFUEUzlarxlreoVC6QeRogaPTThtspZyT-7_aQwzHCVPe7cMUx7K4E9CoVV2JWshfh1Neqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075964262</pqid></control><display><type>article</type><title>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</title><source>Publicly Available Content (ProQuest)</source><creator>Sengar, Rahul ; Tauris, Thomas M ; Langer, Norbert ; Istrate, Alina G</creator><creatorcontrib>Sengar, Rahul ; Tauris, Thomas M ; Langer, Norbert ; Istrate, Alina G</creatorcontrib><description>Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1704.08260</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binary stars ; Damping ; Deposition ; Helium ; Mass transfer ; Mathematical models ; Millisecond pulsars ; Neutron stars ; Neutrons ; Orbits ; Stellar evolution ; White dwarf stars ; X ray binaries ; X ray stars</subject><ispartof>arXiv.org, 2017-05</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2075964262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sengar, Rahul</creatorcontrib><creatorcontrib>Tauris, Thomas M</creatorcontrib><creatorcontrib>Langer, Norbert</creatorcontrib><creatorcontrib>Istrate, Alina G</creatorcontrib><title>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</title><title>arXiv.org</title><description>Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period.</description><subject>Binary stars</subject><subject>Damping</subject><subject>Deposition</subject><subject>Helium</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Millisecond pulsars</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Orbits</subject><subject>Stellar evolution</subject><subject>White dwarf stars</subject><subject>X ray binaries</subject><subject>X ray stars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEYhIMgWGp_gLeA59Q3yWZ3e5TiFxS99OCtZJM3uiW7aZNsa_-9Ab3MHIZnZgi547CsWqXgQcef_rTkDVRLaEUNV2QmpOSsrYS4IYuU9gAg6kYoJWfk-B5O6OkQLHrfj180ODr5HDUzYThok-kni_pCu37U8ULxFPyU-zBSRlPWnUc66JRoAcbkMFIXw0DP331Gas86uhIFOuKUY2EKEdMtuXbaJ1z8-5xsn5-261e2-Xh5Wz9umFZCsHIQLLemQy0BXKMMtGAMylXdFUEUzlarxlreoVC6QeRogaPTThtspZyT-7_aQwzHCVPe7cMUx7K4E9CoVV2JWshfh1Neqw</recordid><startdate>20170531</startdate><enddate>20170531</enddate><creator>Sengar, Rahul</creator><creator>Tauris, Thomas M</creator><creator>Langer, Norbert</creator><creator>Istrate, Alina G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170531</creationdate><title>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</title><author>Sengar, Rahul ; Tauris, Thomas M ; Langer, Norbert ; Istrate, Alina G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-2670d1dcbea300f75c080cce396be39ee2fd497dd1be25a7ee1ed01efaface833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binary stars</topic><topic>Damping</topic><topic>Deposition</topic><topic>Helium</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Millisecond pulsars</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Orbits</topic><topic>Stellar evolution</topic><topic>White dwarf stars</topic><topic>X ray binaries</topic><topic>X ray stars</topic><toplevel>online_resources</toplevel><creatorcontrib>Sengar, Rahul</creatorcontrib><creatorcontrib>Tauris, Thomas M</creatorcontrib><creatorcontrib>Langer, Norbert</creatorcontrib><creatorcontrib>Istrate, Alina G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengar, Rahul</au><au>Tauris, Thomas M</au><au>Langer, Norbert</au><au>Istrate, Alina G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars</atitle><jtitle>arXiv.org</jtitle><date>2017-05-31</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually "merge" due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultra-compact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-LMXB systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 minutes. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ~0.005 Msun after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate vs. orbital period.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1704.08260</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2075964262
source Publicly Available Content (ProQuest)
subjects Binary stars
Damping
Deposition
Helium
Mass transfer
Mathematical models
Millisecond pulsars
Neutron stars
Neutrons
Orbits
Stellar evolution
White dwarf stars
X ray binaries
X ray stars
title Novel modelling of ultra-compact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20modelling%20of%20ultra-compact%20X-ray%20binary%20evolution%20-%20stable%20mass%20transfer%20from%20white%20dwarfs%20to%20neutron%20stars&rft.jtitle=arXiv.org&rft.au=Sengar,%20Rahul&rft.date=2017-05-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1704.08260&rft_dat=%3Cproquest%3E2075964262%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-2670d1dcbea300f75c080cce396be39ee2fd497dd1be25a7ee1ed01efaface833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075964262&rft_id=info:pmid/&rfr_iscdi=true