Loading…

Neutron Disappearance and Regeneration from Mirror State

The purpose of this paper is to demonstrate that if the transformation of a neutron to a mirror neutron exists with an oscillation time of the order of ten seconds, it can be detected in a rather simple disappearance and/or regeneration type experiment with an intense beam of cold neutrons. In the p...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-08
Main Authors: Berezhiani, Zurab, Frost, Matthew, Kamyshkov, Yuri, Rybolt, Ben, Varriano, Louis
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Berezhiani, Zurab
Frost, Matthew
Kamyshkov, Yuri
Rybolt, Ben
Varriano, Louis
description The purpose of this paper is to demonstrate that if the transformation of a neutron to a mirror neutron exists with an oscillation time of the order of ten seconds, it can be detected in a rather simple disappearance and/or regeneration type experiment with an intense beam of cold neutrons. In the presence of a conjectural mirror magnetic field of unknown magnitude and direction, the resonance transformation conditions can be found by scanning the magnitude of the ordinary magnetic field in the range e.g. \(\pm 100 \mu\)T. Magnetic field is assumed to be uniform along the path of neutron beam. If the transformation effect exists within this range, the direction and possible time variation of the mirror magnetic field can be determined with additional dedicated measurements.
doi_str_mv 10.48550/arxiv.1703.06735
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076013200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076013200</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-2406aa82326500d2963776eff5744d9dd3964997d428b05eab5d7d5686e96c4b3</originalsourceid><addsrcrecordid>eNotjU1Lw0AQQBdBsNT-AG8Bz4mT2Z39OEr9hKqgvZdJdyIpmo2bRPz5FvT0Dg_eU-qihsp4Irji_NN9V7UDXYF1mk7UArWuS28Qz9RqHA8AgNYhkV4o_yzzlFNf3HQjD4Nw5n4vBfexeJV36SXz1B11m9Nn8dTlnHLxNvEk5-q05Y9RVv9cqu3d7Xb9UG5e7h_X15uSCaFEA5bZo0ZLABGD1c5ZaVtyxsQQow7WhOCiQd8ACTcUXSTrrQS7N41eqsu_7JDT1yzjtDukOffH4w7BWag1AuhfamdGzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076013200</pqid></control><display><type>article</type><title>Neutron Disappearance and Regeneration from Mirror State</title><source>Publicly Available Content Database</source><creator>Berezhiani, Zurab ; Frost, Matthew ; Kamyshkov, Yuri ; Rybolt, Ben ; Varriano, Louis</creator><creatorcontrib>Berezhiani, Zurab ; Frost, Matthew ; Kamyshkov, Yuri ; Rybolt, Ben ; Varriano, Louis</creatorcontrib><description>The purpose of this paper is to demonstrate that if the transformation of a neutron to a mirror neutron exists with an oscillation time of the order of ten seconds, it can be detected in a rather simple disappearance and/or regeneration type experiment with an intense beam of cold neutrons. In the presence of a conjectural mirror magnetic field of unknown magnitude and direction, the resonance transformation conditions can be found by scanning the magnitude of the ordinary magnetic field in the range e.g. \(\pm 100 \mu\)T. Magnetic field is assumed to be uniform along the path of neutron beam. If the transformation effect exists within this range, the direction and possible time variation of the mirror magnetic field can be determined with additional dedicated measurements.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1703.06735</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cold neutrons ; Magnetic fields ; Neutron beams ; Neutrons ; Regeneration ; Transformations</subject><ispartof>arXiv.org, 2017-08</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076013200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Berezhiani, Zurab</creatorcontrib><creatorcontrib>Frost, Matthew</creatorcontrib><creatorcontrib>Kamyshkov, Yuri</creatorcontrib><creatorcontrib>Rybolt, Ben</creatorcontrib><creatorcontrib>Varriano, Louis</creatorcontrib><title>Neutron Disappearance and Regeneration from Mirror State</title><title>arXiv.org</title><description>The purpose of this paper is to demonstrate that if the transformation of a neutron to a mirror neutron exists with an oscillation time of the order of ten seconds, it can be detected in a rather simple disappearance and/or regeneration type experiment with an intense beam of cold neutrons. In the presence of a conjectural mirror magnetic field of unknown magnitude and direction, the resonance transformation conditions can be found by scanning the magnitude of the ordinary magnetic field in the range e.g. \(\pm 100 \mu\)T. Magnetic field is assumed to be uniform along the path of neutron beam. If the transformation effect exists within this range, the direction and possible time variation of the mirror magnetic field can be determined with additional dedicated measurements.</description><subject>Cold neutrons</subject><subject>Magnetic fields</subject><subject>Neutron beams</subject><subject>Neutrons</subject><subject>Regeneration</subject><subject>Transformations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1Lw0AQQBdBsNT-AG8Bz4mT2Z39OEr9hKqgvZdJdyIpmo2bRPz5FvT0Dg_eU-qihsp4Irji_NN9V7UDXYF1mk7UArWuS28Qz9RqHA8AgNYhkV4o_yzzlFNf3HQjD4Nw5n4vBfexeJV36SXz1B11m9Nn8dTlnHLxNvEk5-q05Y9RVv9cqu3d7Xb9UG5e7h_X15uSCaFEA5bZo0ZLABGD1c5ZaVtyxsQQow7WhOCiQd8ACTcUXSTrrQS7N41eqsu_7JDT1yzjtDukOffH4w7BWag1AuhfamdGzQ</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>Berezhiani, Zurab</creator><creator>Frost, Matthew</creator><creator>Kamyshkov, Yuri</creator><creator>Rybolt, Ben</creator><creator>Varriano, Louis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170818</creationdate><title>Neutron Disappearance and Regeneration from Mirror State</title><author>Berezhiani, Zurab ; Frost, Matthew ; Kamyshkov, Yuri ; Rybolt, Ben ; Varriano, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-2406aa82326500d2963776eff5744d9dd3964997d428b05eab5d7d5686e96c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cold neutrons</topic><topic>Magnetic fields</topic><topic>Neutron beams</topic><topic>Neutrons</topic><topic>Regeneration</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Berezhiani, Zurab</creatorcontrib><creatorcontrib>Frost, Matthew</creatorcontrib><creatorcontrib>Kamyshkov, Yuri</creatorcontrib><creatorcontrib>Rybolt, Ben</creatorcontrib><creatorcontrib>Varriano, Louis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berezhiani, Zurab</au><au>Frost, Matthew</au><au>Kamyshkov, Yuri</au><au>Rybolt, Ben</au><au>Varriano, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron Disappearance and Regeneration from Mirror State</atitle><jtitle>arXiv.org</jtitle><date>2017-08-18</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The purpose of this paper is to demonstrate that if the transformation of a neutron to a mirror neutron exists with an oscillation time of the order of ten seconds, it can be detected in a rather simple disappearance and/or regeneration type experiment with an intense beam of cold neutrons. In the presence of a conjectural mirror magnetic field of unknown magnitude and direction, the resonance transformation conditions can be found by scanning the magnitude of the ordinary magnetic field in the range e.g. \(\pm 100 \mu\)T. Magnetic field is assumed to be uniform along the path of neutron beam. If the transformation effect exists within this range, the direction and possible time variation of the mirror magnetic field can be determined with additional dedicated measurements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1703.06735</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076013200
source Publicly Available Content Database
subjects Cold neutrons
Magnetic fields
Neutron beams
Neutrons
Regeneration
Transformations
title Neutron Disappearance and Regeneration from Mirror State
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron%20Disappearance%20and%20Regeneration%20from%20Mirror%20State&rft.jtitle=arXiv.org&rft.au=Berezhiani,%20Zurab&rft.date=2017-08-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1703.06735&rft_dat=%3Cproquest%3E2076013200%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-2406aa82326500d2963776eff5744d9dd3964997d428b05eab5d7d5686e96c4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076013200&rft_id=info:pmid/&rfr_iscdi=true