Loading…
The Cramér-Rao inequality on singular statistical models I
We introduce the notion of the essential tangent bundle of a parametrized measure model and the notion of reduced Fisher metric on a (possibly singular) 2-integrable measure model. Using these notions and a new characterization of \(k\)-integrable parametrized measure models, we extend the Cramér-Ra...
Saved in:
Published in: | arXiv.org 2017-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jost, Jürgen Lê, Hông Vân Lorenz Schwachhöfer |
description | We introduce the notion of the essential tangent bundle of a parametrized measure model and the notion of reduced Fisher metric on a (possibly singular) 2-integrable measure model. Using these notions and a new characterization of \(k\)-integrable parametrized measure models, we extend the Cramér-Rao inequality to \(2\)-integrable (possibly singular) statistical models for general \(\varphi\)-estimations, where \(\varphi\) is a \(V\)-valued feature function and \(V\) is a topological vector space. Thus we derive an intrinsic Cramér-Rao inequality in the most general terms of parametric statistics. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076064276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076064276</sourcerecordid><originalsourceid>FETCH-proquest_journals_20760642763</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDslIVXAuSsw9vLJINygxXyEzL7WwNDEns6RSIT9PoTgzL700J7FIobgksSSzuCQzOTFHITc_JTWnWMGTh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijQzMzQzMTIzMzYyJUwUASK03ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076064276</pqid></control><display><type>article</type><title>The Cramér-Rao inequality on singular statistical models I</title><source>Publicly Available Content Database</source><creator>Jost, Jürgen ; Lê, Hông Vân ; Lorenz Schwachhöfer</creator><creatorcontrib>Jost, Jürgen ; Lê, Hông Vân ; Lorenz Schwachhöfer</creatorcontrib><description>We introduce the notion of the essential tangent bundle of a parametrized measure model and the notion of reduced Fisher metric on a (possibly singular) 2-integrable measure model. Using these notions and a new characterization of \(k\)-integrable parametrized measure models, we extend the Cramér-Rao inequality to \(2\)-integrable (possibly singular) statistical models for general \(\varphi\)-estimations, where \(\varphi\) is a \(V\)-valued feature function and \(V\) is a topological vector space. Thus we derive an intrinsic Cramér-Rao inequality in the most general terms of parametric statistics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inequality ; Parameterization ; Statistical models</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076064276?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jost, Jürgen</creatorcontrib><creatorcontrib>Lê, Hông Vân</creatorcontrib><creatorcontrib>Lorenz Schwachhöfer</creatorcontrib><title>The Cramér-Rao inequality on singular statistical models I</title><title>arXiv.org</title><description>We introduce the notion of the essential tangent bundle of a parametrized measure model and the notion of reduced Fisher metric on a (possibly singular) 2-integrable measure model. Using these notions and a new characterization of \(k\)-integrable parametrized measure models, we extend the Cramér-Rao inequality to \(2\)-integrable (possibly singular) statistical models for general \(\varphi\)-estimations, where \(\varphi\) is a \(V\)-valued feature function and \(V\) is a topological vector space. Thus we derive an intrinsic Cramér-Rao inequality in the most general terms of parametric statistics.</description><subject>Inequality</subject><subject>Parameterization</subject><subject>Statistical models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDslIVXAuSsw9vLJINygxXyEzL7WwNDEns6RSIT9PoTgzL700J7FIobgksSSzuCQzOTFHITc_JTWnWMGTh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijQzMzQzMTIzMzYyJUwUASK03ug</recordid><startdate>20170720</startdate><enddate>20170720</enddate><creator>Jost, Jürgen</creator><creator>Lê, Hông Vân</creator><creator>Lorenz Schwachhöfer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170720</creationdate><title>The Cramér-Rao inequality on singular statistical models I</title><author>Jost, Jürgen ; Lê, Hông Vân ; Lorenz Schwachhöfer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20760642763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Inequality</topic><topic>Parameterization</topic><topic>Statistical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Jost, Jürgen</creatorcontrib><creatorcontrib>Lê, Hông Vân</creatorcontrib><creatorcontrib>Lorenz Schwachhöfer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jost, Jürgen</au><au>Lê, Hông Vân</au><au>Lorenz Schwachhöfer</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Cramér-Rao inequality on singular statistical models I</atitle><jtitle>arXiv.org</jtitle><date>2017-07-20</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We introduce the notion of the essential tangent bundle of a parametrized measure model and the notion of reduced Fisher metric on a (possibly singular) 2-integrable measure model. Using these notions and a new characterization of \(k\)-integrable parametrized measure models, we extend the Cramér-Rao inequality to \(2\)-integrable (possibly singular) statistical models for general \(\varphi\)-estimations, where \(\varphi\) is a \(V\)-valued feature function and \(V\) is a topological vector space. Thus we derive an intrinsic Cramér-Rao inequality in the most general terms of parametric statistics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076064276 |
source | Publicly Available Content Database |
subjects | Inequality Parameterization Statistical models |
title | The Cramér-Rao inequality on singular statistical models I |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Cram%C3%A9r-Rao%20inequality%20on%20singular%20statistical%20models%20I&rft.jtitle=arXiv.org&rft.au=Jost,%20J%C3%BCrgen&rft.date=2017-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076064276%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20760642763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076064276&rft_id=info:pmid/&rfr_iscdi=true |