Loading…

Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization

Successful preparation of polymer nanocomposites, exploiting graphene-related materials, via melt mixing technology requires precise design, optimization and control of processing. In the present work, the effect of different processing parameters during the preparation of poly (butylene terephthala...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-06
Main Authors: Colonna, S, Bernal, M M, Gavoci, G, Gomez, J, Novara, C, Saracco, G, Fina, A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Colonna, S
Bernal, M M
Gavoci, G
Gomez, J
Novara, C
Saracco, G
Fina, A
description Successful preparation of polymer nanocomposites, exploiting graphene-related materials, via melt mixing technology requires precise design, optimization and control of processing. In the present work, the effect of different processing parameters during the preparation of poly (butylene terephthalate) nanocomposites, through ring-opening polymerization of cyclic butylene terephthalate in presence of graphite nanoplatelets (GNP), was thoroughly addressed. Processing temperature (240{\deg}C or 260{\deg}C), extrusion time (5 or 10 minutes) and shear rate (50 or 100 rpm) were varied by means of a full factorial design of experiment approach, leading to the preparation of polybutylene terephthalate/GNP nanocomposite in 8 different processing conditions. Morphology and quality of GNP were investigated by means of electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Molecular weight of the polymer matrix in nanocomposites and nanoflake dispersion were experimentally determined as a function of the different processing conditions. The effect of transformation parameters on electrical and thermal properties was studied by means of electrical and thermal conductivity measurement. Heat and charge transport performance evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; in particular, gentle processing conditions (low shear rate, short mixing time) turned out to be the most favourable condition to obtain high conductivity values.
doi_str_mv 10.48550/arxiv.1703.00798
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076070145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076070145</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-a57b10e3f972f389e134c89563c9262813824a6b4a7bcd3aec3249e002c5ced93</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMgWGp_gLeAFz1szcdmkz1KqR9Q8NJ7yWZnbco2WZNssf4d_6hZ9TAzDMz7PsOL0A0ly1IJQR50-LSnJZWELwmRtbpAM8Y5LVTJ2BVaxHgghLBKMiH4DH2vuw5Mwr7DQ_AGYrTuHRvvWpusdxF7h9MepgpH3WPtWgx9VgRr8jodjibZk03nXw_fn_FdM6ZzDy6rIMCwT3vd6wT32GnnjT8OPtoEMQNh0AFafLIah8wt_ABu4k82Rwj2S09PXKPLTvcRFv9zjrZP6-3qpdi8Pb-uHjeFFkzkJhtKgHe1ZB1XNVBeGlWLipuaVUxRrlipq6bUsjEt12A4K2vIWRhhoK35HN3-2eYgPkaIaXfwY3CZuGNEVkQSWgr-AxZFcQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076070145</pqid></control><display><type>article</type><title>Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization</title><source>Publicly Available Content (ProQuest)</source><creator>Colonna, S ; Bernal, M M ; Gavoci, G ; Gomez, J ; Novara, C ; Saracco, G ; Fina, A</creator><creatorcontrib>Colonna, S ; Bernal, M M ; Gavoci, G ; Gomez, J ; Novara, C ; Saracco, G ; Fina, A</creatorcontrib><description>Successful preparation of polymer nanocomposites, exploiting graphene-related materials, via melt mixing technology requires precise design, optimization and control of processing. In the present work, the effect of different processing parameters during the preparation of poly (butylene terephthalate) nanocomposites, through ring-opening polymerization of cyclic butylene terephthalate in presence of graphite nanoplatelets (GNP), was thoroughly addressed. Processing temperature (240{\deg}C or 260{\deg}C), extrusion time (5 or 10 minutes) and shear rate (50 or 100 rpm) were varied by means of a full factorial design of experiment approach, leading to the preparation of polybutylene terephthalate/GNP nanocomposite in 8 different processing conditions. Morphology and quality of GNP were investigated by means of electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Molecular weight of the polymer matrix in nanocomposites and nanoflake dispersion were experimentally determined as a function of the different processing conditions. The effect of transformation parameters on electrical and thermal properties was studied by means of electrical and thermal conductivity measurement. Heat and charge transport performance evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; in particular, gentle processing conditions (low shear rate, short mixing time) turned out to be the most favourable condition to obtain high conductivity values.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1703.00798</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Charge transport ; Design of experiments ; Design optimization ; Dispersion ; Electrical resistivity ; Extrusion rate ; Factorial design ; Graphene ; Molecular weight ; Morphology ; Nanocomposites ; Photoelectrons ; Polybutylene terephthalates ; Polymerization ; Polymers ; Process parameters ; Raman spectroscopy ; Ring opening polymerization ; Shear rate ; Spectrum analysis ; Terephthalate ; Thermal conductivity ; Thermodynamic properties ; Thermogravimetry</subject><ispartof>arXiv.org, 2017-06</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076070145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Colonna, S</creatorcontrib><creatorcontrib>Bernal, M M</creatorcontrib><creatorcontrib>Gavoci, G</creatorcontrib><creatorcontrib>Gomez, J</creatorcontrib><creatorcontrib>Novara, C</creatorcontrib><creatorcontrib>Saracco, G</creatorcontrib><creatorcontrib>Fina, A</creatorcontrib><title>Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization</title><title>arXiv.org</title><description>Successful preparation of polymer nanocomposites, exploiting graphene-related materials, via melt mixing technology requires precise design, optimization and control of processing. In the present work, the effect of different processing parameters during the preparation of poly (butylene terephthalate) nanocomposites, through ring-opening polymerization of cyclic butylene terephthalate in presence of graphite nanoplatelets (GNP), was thoroughly addressed. Processing temperature (240{\deg}C or 260{\deg}C), extrusion time (5 or 10 minutes) and shear rate (50 or 100 rpm) were varied by means of a full factorial design of experiment approach, leading to the preparation of polybutylene terephthalate/GNP nanocomposite in 8 different processing conditions. Morphology and quality of GNP were investigated by means of electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Molecular weight of the polymer matrix in nanocomposites and nanoflake dispersion were experimentally determined as a function of the different processing conditions. The effect of transformation parameters on electrical and thermal properties was studied by means of electrical and thermal conductivity measurement. Heat and charge transport performance evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; in particular, gentle processing conditions (low shear rate, short mixing time) turned out to be the most favourable condition to obtain high conductivity values.</description><subject>Charge transport</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Dispersion</subject><subject>Electrical resistivity</subject><subject>Extrusion rate</subject><subject>Factorial design</subject><subject>Graphene</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Photoelectrons</subject><subject>Polybutylene terephthalates</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Raman spectroscopy</subject><subject>Ring opening polymerization</subject><subject>Shear rate</subject><subject>Spectrum analysis</subject><subject>Terephthalate</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkE1LAzEQhoMgWGp_gLeAFz1szcdmkz1KqR9Q8NJ7yWZnbco2WZNssf4d_6hZ9TAzDMz7PsOL0A0ly1IJQR50-LSnJZWELwmRtbpAM8Y5LVTJ2BVaxHgghLBKMiH4DH2vuw5Mwr7DQ_AGYrTuHRvvWpusdxF7h9MepgpH3WPtWgx9VgRr8jodjibZk03nXw_fn_FdM6ZzDy6rIMCwT3vd6wT32GnnjT8OPtoEMQNh0AFafLIah8wt_ABu4k82Rwj2S09PXKPLTvcRFv9zjrZP6-3qpdi8Pb-uHjeFFkzkJhtKgHe1ZB1XNVBeGlWLipuaVUxRrlipq6bUsjEt12A4K2vIWRhhoK35HN3-2eYgPkaIaXfwY3CZuGNEVkQSWgr-AxZFcQQ</recordid><startdate>20170607</startdate><enddate>20170607</enddate><creator>Colonna, S</creator><creator>Bernal, M M</creator><creator>Gavoci, G</creator><creator>Gomez, J</creator><creator>Novara, C</creator><creator>Saracco, G</creator><creator>Fina, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170607</creationdate><title>Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization</title><author>Colonna, S ; Bernal, M M ; Gavoci, G ; Gomez, J ; Novara, C ; Saracco, G ; Fina, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-a57b10e3f972f389e134c89563c9262813824a6b4a7bcd3aec3249e002c5ced93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charge transport</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Dispersion</topic><topic>Electrical resistivity</topic><topic>Extrusion rate</topic><topic>Factorial design</topic><topic>Graphene</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Photoelectrons</topic><topic>Polybutylene terephthalates</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Raman spectroscopy</topic><topic>Ring opening polymerization</topic><topic>Shear rate</topic><topic>Spectrum analysis</topic><topic>Terephthalate</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Colonna, S</creatorcontrib><creatorcontrib>Bernal, M M</creatorcontrib><creatorcontrib>Gavoci, G</creatorcontrib><creatorcontrib>Gomez, J</creatorcontrib><creatorcontrib>Novara, C</creatorcontrib><creatorcontrib>Saracco, G</creatorcontrib><creatorcontrib>Fina, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colonna, S</au><au>Bernal, M M</au><au>Gavoci, G</au><au>Gomez, J</au><au>Novara, C</au><au>Saracco, G</au><au>Fina, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization</atitle><jtitle>arXiv.org</jtitle><date>2017-06-07</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Successful preparation of polymer nanocomposites, exploiting graphene-related materials, via melt mixing technology requires precise design, optimization and control of processing. In the present work, the effect of different processing parameters during the preparation of poly (butylene terephthalate) nanocomposites, through ring-opening polymerization of cyclic butylene terephthalate in presence of graphite nanoplatelets (GNP), was thoroughly addressed. Processing temperature (240{\deg}C or 260{\deg}C), extrusion time (5 or 10 minutes) and shear rate (50 or 100 rpm) were varied by means of a full factorial design of experiment approach, leading to the preparation of polybutylene terephthalate/GNP nanocomposite in 8 different processing conditions. Morphology and quality of GNP were investigated by means of electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and Raman spectroscopy. Molecular weight of the polymer matrix in nanocomposites and nanoflake dispersion were experimentally determined as a function of the different processing conditions. The effect of transformation parameters on electrical and thermal properties was studied by means of electrical and thermal conductivity measurement. Heat and charge transport performance evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; in particular, gentle processing conditions (low shear rate, short mixing time) turned out to be the most favourable condition to obtain high conductivity values.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1703.00798</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076070145
source Publicly Available Content (ProQuest)
subjects Charge transport
Design of experiments
Design optimization
Dispersion
Electrical resistivity
Extrusion rate
Factorial design
Graphene
Molecular weight
Morphology
Nanocomposites
Photoelectrons
Polybutylene terephthalates
Polymerization
Polymers
Process parameters
Raman spectroscopy
Ring opening polymerization
Shear rate
Spectrum analysis
Terephthalate
Thermal conductivity
Thermodynamic properties
Thermogravimetry
title Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20processing%20conditions%20on%20the%20thermal%20and%20electrical%20conductivity%20of%20poly%20(butylene%20terephthalate)%20nanocomposites%20prepared%20via%20ring-opening%20polymerization&rft.jtitle=arXiv.org&rft.au=Colonna,%20S&rft.date=2017-06-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1703.00798&rft_dat=%3Cproquest%3E2076070145%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-a57b10e3f972f389e134c89563c9262813824a6b4a7bcd3aec3249e002c5ced93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076070145&rft_id=info:pmid/&rfr_iscdi=true