Loading…
The enhanced principal rank characteristic sequence over a field of characteristic 2
The enhanced principal rank characteristic sequence (epr-sequence) of an \(n \times n\) symmetric matrix over a field \(\mathbb{F}\) was recently defined as \(\ell_1 \ell_2 \cdots \ell_n\), where \(\ell_k\) is either \(\tt A\), \(\tt S\), or \(\tt N\) based on whether all, some (but not all), or non...
Saved in:
Published in: | arXiv.org 2017-09 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Martínez-Rivera, Xavier |
description | The enhanced principal rank characteristic sequence (epr-sequence) of an \(n \times n\) symmetric matrix over a field \(\mathbb{F}\) was recently defined as \(\ell_1 \ell_2 \cdots \ell_n\), where \(\ell_k\) is either \(\tt A\), \(\tt S\), or \(\tt N\) based on whether all, some (but not all), or none of the order-\(k\) principal minors of the matrix are nonzero. Here, a complete characterization of the epr-sequences that are attainable by symmetric matrices over the field \(\mathbb{Z}_2\), the integers modulo \(2\), is established. Contrary to the attainable epr-sequences over a field of characteristic \(0\), our characterization reveals that the attainable epr-sequences over \(\mathbb{Z}_2\) possess very special structures. For more general fields of characteristic \(2\), some restrictions on attainable epr-sequences are obtained. |
doi_str_mv | 10.48550/arxiv.1608.07871 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076103432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076103432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-2f3b213c6b432dfe94fb197286a284502c94f88494d129a43ca9292f8ca95aa93</originalsourceid><addsrcrecordid>eNpdjstqwzAUREWh0JDmA7oTdG1XunpYWpbQFwSy8T5cyxJWamxXckI_v4J21dXAcDgzhDxwVkujFHvC9B2vNdfM1KwxDb8hGxCCV0YC3JFdzmfGGOgGlBIb0raDp34acHK-p0uKk4sLjjTh9EndgAnd6lPMa3Q0-6-LLxydrz5RpCH6sadz-M_BPbkNOGa_-8staV9f2v17dTi-feyfDxUqgAqC6IALpzspoA_eytBx24DRCEYqBq40xkgrew4WpXBowUIwJRWiFVvy-Ktd0lye5fV0ni9pKosnYI3mTBSx-AFjYFFd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076103432</pqid></control><display><type>article</type><title>The enhanced principal rank characteristic sequence over a field of characteristic 2</title><source>Publicly Available Content Database</source><creator>Martínez-Rivera, Xavier</creator><creatorcontrib>Martínez-Rivera, Xavier</creatorcontrib><description>The enhanced principal rank characteristic sequence (epr-sequence) of an \(n \times n\) symmetric matrix over a field \(\mathbb{F}\) was recently defined as \(\ell_1 \ell_2 \cdots \ell_n\), where \(\ell_k\) is either \(\tt A\), \(\tt S\), or \(\tt N\) based on whether all, some (but not all), or none of the order-\(k\) principal minors of the matrix are nonzero. Here, a complete characterization of the epr-sequences that are attainable by symmetric matrices over the field \(\mathbb{Z}_2\), the integers modulo \(2\), is established. Contrary to the attainable epr-sequences over a field of characteristic \(0\), our characterization reveals that the attainable epr-sequences over \(\mathbb{Z}_2\) possess very special structures. For more general fields of characteristic \(2\), some restrictions on attainable epr-sequences are obtained.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1608.07871</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integers ; Mathematical analysis ; Matrix methods</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076103432?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Martínez-Rivera, Xavier</creatorcontrib><title>The enhanced principal rank characteristic sequence over a field of characteristic 2</title><title>arXiv.org</title><description>The enhanced principal rank characteristic sequence (epr-sequence) of an \(n \times n\) symmetric matrix over a field \(\mathbb{F}\) was recently defined as \(\ell_1 \ell_2 \cdots \ell_n\), where \(\ell_k\) is either \(\tt A\), \(\tt S\), or \(\tt N\) based on whether all, some (but not all), or none of the order-\(k\) principal minors of the matrix are nonzero. Here, a complete characterization of the epr-sequences that are attainable by symmetric matrices over the field \(\mathbb{Z}_2\), the integers modulo \(2\), is established. Contrary to the attainable epr-sequences over a field of characteristic \(0\), our characterization reveals that the attainable epr-sequences over \(\mathbb{Z}_2\) possess very special structures. For more general fields of characteristic \(2\), some restrictions on attainable epr-sequences are obtained.</description><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdjstqwzAUREWh0JDmA7oTdG1XunpYWpbQFwSy8T5cyxJWamxXckI_v4J21dXAcDgzhDxwVkujFHvC9B2vNdfM1KwxDb8hGxCCV0YC3JFdzmfGGOgGlBIb0raDp34acHK-p0uKk4sLjjTh9EndgAnd6lPMa3Q0-6-LLxydrz5RpCH6sadz-M_BPbkNOGa_-8staV9f2v17dTi-feyfDxUqgAqC6IALpzspoA_eytBx24DRCEYqBq40xkgrew4WpXBowUIwJRWiFVvy-Ktd0lye5fV0ni9pKosnYI3mTBSx-AFjYFFd</recordid><startdate>20170902</startdate><enddate>20170902</enddate><creator>Martínez-Rivera, Xavier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170902</creationdate><title>The enhanced principal rank characteristic sequence over a field of characteristic 2</title><author>Martínez-Rivera, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-2f3b213c6b432dfe94fb197286a284502c94f88494d129a43ca9292f8ca95aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Rivera, Xavier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Rivera, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The enhanced principal rank characteristic sequence over a field of characteristic 2</atitle><jtitle>arXiv.org</jtitle><date>2017-09-02</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>The enhanced principal rank characteristic sequence (epr-sequence) of an \(n \times n\) symmetric matrix over a field \(\mathbb{F}\) was recently defined as \(\ell_1 \ell_2 \cdots \ell_n\), where \(\ell_k\) is either \(\tt A\), \(\tt S\), or \(\tt N\) based on whether all, some (but not all), or none of the order-\(k\) principal minors of the matrix are nonzero. Here, a complete characterization of the epr-sequences that are attainable by symmetric matrices over the field \(\mathbb{Z}_2\), the integers modulo \(2\), is established. Contrary to the attainable epr-sequences over a field of characteristic \(0\), our characterization reveals that the attainable epr-sequences over \(\mathbb{Z}_2\) possess very special structures. For more general fields of characteristic \(2\), some restrictions on attainable epr-sequences are obtained.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1608.07871</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076103432 |
source | Publicly Available Content Database |
subjects | Integers Mathematical analysis Matrix methods |
title | The enhanced principal rank characteristic sequence over a field of characteristic 2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20enhanced%20principal%20rank%20characteristic%20sequence%20over%20a%20field%20of%20characteristic%202&rft.jtitle=arXiv.org&rft.au=Mart%C3%ADnez-Rivera,%20Xavier&rft.date=2017-09-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1608.07871&rft_dat=%3Cproquest%3E2076103432%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-2f3b213c6b432dfe94fb197286a284502c94f88494d129a43ca9292f8ca95aa93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076103432&rft_id=info:pmid/&rfr_iscdi=true |