Loading…
Full linear multistep methods as root-finders
Root-finders based on full linear multistep methods (LMMs) use previous function values, derivatives and root estimates to iteratively find a root of a nonlinear function. As ODE solvers, full LMMs are typically not zero-stable. However, used as root-finders, the interpolation points are convergent...
Saved in:
Published in: | arXiv.org 2017-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | van Lith, Bart S Jan H M ten Thije Boonkkamp IJzerman, Wilbert L |
description | Root-finders based on full linear multistep methods (LMMs) use previous function values, derivatives and root estimates to iteratively find a root of a nonlinear function. As ODE solvers, full LMMs are typically not zero-stable. However, used as root-finders, the interpolation points are convergent so that such stability issues are circumvented. A general analysis is provided based on inverse polynomial interpolation, which is used to prove a fundamental barrier on the convergence rate of any LMM-based method. We show, using numerical examples, that full LMM-based methods perform excellently. Finally, we also provide a robust implementation based on Brent's method that is guaranteed to converge. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076150661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076150661</sourcerecordid><originalsourceid>FETCH-proquest_journals_20761506613</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCC3aOwRcB5KJSbsXiwdwXwKdYkqa1Exyf114AFd_8f6BtaC1EsMVoGEd0SqlBNuDMbplYqwh8OAjusy3GoqngjvfsLzSTNwRzykVsfg4Y6YzOy4uEHa_nthlvD9vD7Hn9K5IZVpTzfFLE8jeKiOtVfq_6wPY-jIv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076150661</pqid></control><display><type>article</type><title>Full linear multistep methods as root-finders</title><source>ProQuest - Publicly Available Content Database</source><creator>van Lith, Bart S ; Jan H M ten Thije Boonkkamp ; IJzerman, Wilbert L</creator><creatorcontrib>van Lith, Bart S ; Jan H M ten Thije Boonkkamp ; IJzerman, Wilbert L</creatorcontrib><description>Root-finders based on full linear multistep methods (LMMs) use previous function values, derivatives and root estimates to iteratively find a root of a nonlinear function. As ODE solvers, full LMMs are typically not zero-stable. However, used as root-finders, the interpolation points are convergent so that such stability issues are circumvented. A general analysis is provided based on inverse polynomial interpolation, which is used to prove a fundamental barrier on the convergence rate of any LMM-based method. We show, using numerical examples, that full LMM-based methods perform excellently. Finally, we also provide a robust implementation based on Brent's method that is guaranteed to converge.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Interpolation ; Mathematical analysis ; Polynomials ; Robustness (mathematics) ; Solvers ; Stability analysis</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076150661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>van Lith, Bart S</creatorcontrib><creatorcontrib>Jan H M ten Thije Boonkkamp</creatorcontrib><creatorcontrib>IJzerman, Wilbert L</creatorcontrib><title>Full linear multistep methods as root-finders</title><title>arXiv.org</title><description>Root-finders based on full linear multistep methods (LMMs) use previous function values, derivatives and root estimates to iteratively find a root of a nonlinear function. As ODE solvers, full LMMs are typically not zero-stable. However, used as root-finders, the interpolation points are convergent so that such stability issues are circumvented. A general analysis is provided based on inverse polynomial interpolation, which is used to prove a fundamental barrier on the convergence rate of any LMM-based method. We show, using numerical examples, that full LMM-based methods perform excellently. Finally, we also provide a robust implementation based on Brent's method that is guaranteed to converge.</description><subject>Convergence</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Robustness (mathematics)</subject><subject>Solvers</subject><subject>Stability analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykEKwjAQQNEgCC3aOwRcB5KJSbsXiwdwXwKdYkqa1Exyf114AFd_8f6BtaC1EsMVoGEd0SqlBNuDMbplYqwh8OAjusy3GoqngjvfsLzSTNwRzykVsfg4Y6YzOy4uEHa_nthlvD9vD7Hn9K5IZVpTzfFLE8jeKiOtVfq_6wPY-jIv</recordid><startdate>20170906</startdate><enddate>20170906</enddate><creator>van Lith, Bart S</creator><creator>Jan H M ten Thije Boonkkamp</creator><creator>IJzerman, Wilbert L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170906</creationdate><title>Full linear multistep methods as root-finders</title><author>van Lith, Bart S ; Jan H M ten Thije Boonkkamp ; IJzerman, Wilbert L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20761506613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convergence</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Robustness (mathematics)</topic><topic>Solvers</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>van Lith, Bart S</creatorcontrib><creatorcontrib>Jan H M ten Thije Boonkkamp</creatorcontrib><creatorcontrib>IJzerman, Wilbert L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Lith, Bart S</au><au>Jan H M ten Thije Boonkkamp</au><au>IJzerman, Wilbert L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Full linear multistep methods as root-finders</atitle><jtitle>arXiv.org</jtitle><date>2017-09-06</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Root-finders based on full linear multistep methods (LMMs) use previous function values, derivatives and root estimates to iteratively find a root of a nonlinear function. As ODE solvers, full LMMs are typically not zero-stable. However, used as root-finders, the interpolation points are convergent so that such stability issues are circumvented. A general analysis is provided based on inverse polynomial interpolation, which is used to prove a fundamental barrier on the convergence rate of any LMM-based method. We show, using numerical examples, that full LMM-based methods perform excellently. Finally, we also provide a robust implementation based on Brent's method that is guaranteed to converge.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076150661 |
source | ProQuest - Publicly Available Content Database |
subjects | Convergence Interpolation Mathematical analysis Polynomials Robustness (mathematics) Solvers Stability analysis |
title | Full linear multistep methods as root-finders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Full%20linear%20multistep%20methods%20as%20root-finders&rft.jtitle=arXiv.org&rft.au=van%20Lith,%20Bart%20S&rft.date=2017-09-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076150661%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20761506613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076150661&rft_id=info:pmid/&rfr_iscdi=true |