Loading…

Evidence of a fractional quantum Hall nematic phase in a microscopic model

At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon approach to the putative point of a quantum phase tra...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-07
Main Authors: Regnault, N, Maciejko, J, Kivelson, S A, Sondhi, S L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Regnault, N
Maciejko, J
Kivelson, S A
Sondhi, S L
description At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon approach to the putative point of a quantum phase transition to a FQH nematic. Motivated by these considerations as well as by suggestive evidence of an FQH nematic in tilted field experiments, we have sought evidence of such a nematic FQHE in a microscopic model of interacting electrons in the lowest Landau level at filling factor 1/3. Using a family of anisotropic Laughlin states as trial wave functions, we find a continuous quantum phase transition between the isotropic Laughlin liquid and the FQH nematic. Results of numerical exact diagonalization also suggest that rotational symmetry is spontaneously broken, and that the phase diagram of the model contains both a nematic and a stripe phase.
doi_str_mv 10.48550/arxiv.1607.02178
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076231232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076231232</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-2a6c38938b80d9ab4c1b9b4522014bcd25d4a4b92d7a37162027290a348849d23</originalsourceid><addsrcrecordid>eNotjl1LwzAYhYMgOOZ-gHcBrzuTN0mTXMqYThl4s_vx5qOY0TZd0w5_vgW9OnCew8Mh5ImzrTRKsRccf9Jty2umtwy4NndkBULwykiAB7Ip5cIYg1qDUmJFPve3FGLvI80NRdqM6KeUe2zpdcZ-mjt6wLalfexwSp4O31giTf0y7ZIfc_F5WOouh9g-kvsG2xI3_7kmp7f9aXeojl_vH7vXY4UKoAKsvTBWGGdYsOik5846uSDGpfMBVJAonYWgUWheAwMNlqGQxkgbQKzJ8592GPN1jmU6X_I8Lo_LGZiuQXAQIH4BW0tM0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076231232</pqid></control><display><type>article</type><title>Evidence of a fractional quantum Hall nematic phase in a microscopic model</title><source>Publicly Available Content Database</source><creator>Regnault, N ; Maciejko, J ; Kivelson, S A ; Sondhi, S L</creator><creatorcontrib>Regnault, N ; Maciejko, J ; Kivelson, S A ; Sondhi, S L</creatorcontrib><description>At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon approach to the putative point of a quantum phase transition to a FQH nematic. Motivated by these considerations as well as by suggestive evidence of an FQH nematic in tilted field experiments, we have sought evidence of such a nematic FQHE in a microscopic model of interacting electrons in the lowest Landau level at filling factor 1/3. Using a family of anisotropic Laughlin states as trial wave functions, we find a continuous quantum phase transition between the isotropic Laughlin liquid and the FQH nematic. Results of numerical exact diagonalization also suggest that rotational symmetry is spontaneously broken, and that the phase diagram of the model contains both a nematic and a stripe phase.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1607.02178</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical models ; Phase diagrams ; Phase transitions ; Quantum theory ; Variations ; Wave functions</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076231232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Regnault, N</creatorcontrib><creatorcontrib>Maciejko, J</creatorcontrib><creatorcontrib>Kivelson, S A</creatorcontrib><creatorcontrib>Sondhi, S L</creatorcontrib><title>Evidence of a fractional quantum Hall nematic phase in a microscopic model</title><title>arXiv.org</title><description>At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon approach to the putative point of a quantum phase transition to a FQH nematic. Motivated by these considerations as well as by suggestive evidence of an FQH nematic in tilted field experiments, we have sought evidence of such a nematic FQHE in a microscopic model of interacting electrons in the lowest Landau level at filling factor 1/3. Using a family of anisotropic Laughlin states as trial wave functions, we find a continuous quantum phase transition between the isotropic Laughlin liquid and the FQH nematic. Results of numerical exact diagonalization also suggest that rotational symmetry is spontaneously broken, and that the phase diagram of the model contains both a nematic and a stripe phase.</description><subject>Mathematical models</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Quantum theory</subject><subject>Variations</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjl1LwzAYhYMgOOZ-gHcBrzuTN0mTXMqYThl4s_vx5qOY0TZd0w5_vgW9OnCew8Mh5ImzrTRKsRccf9Jty2umtwy4NndkBULwykiAB7Ip5cIYg1qDUmJFPve3FGLvI80NRdqM6KeUe2zpdcZ-mjt6wLalfexwSp4O31giTf0y7ZIfc_F5WOouh9g-kvsG2xI3_7kmp7f9aXeojl_vH7vXY4UKoAKsvTBWGGdYsOik5846uSDGpfMBVJAonYWgUWheAwMNlqGQxkgbQKzJ8592GPN1jmU6X_I8Lo_LGZiuQXAQIH4BW0tM0Q</recordid><startdate>20170727</startdate><enddate>20170727</enddate><creator>Regnault, N</creator><creator>Maciejko, J</creator><creator>Kivelson, S A</creator><creator>Sondhi, S L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170727</creationdate><title>Evidence of a fractional quantum Hall nematic phase in a microscopic model</title><author>Regnault, N ; Maciejko, J ; Kivelson, S A ; Sondhi, S L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-2a6c38938b80d9ab4c1b9b4522014bcd25d4a4b92d7a37162027290a348849d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematical models</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Quantum theory</topic><topic>Variations</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Regnault, N</creatorcontrib><creatorcontrib>Maciejko, J</creatorcontrib><creatorcontrib>Kivelson, S A</creatorcontrib><creatorcontrib>Sondhi, S L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regnault, N</au><au>Maciejko, J</au><au>Kivelson, S A</au><au>Sondhi, S L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of a fractional quantum Hall nematic phase in a microscopic model</atitle><jtitle>arXiv.org</jtitle><date>2017-07-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon approach to the putative point of a quantum phase transition to a FQH nematic. Motivated by these considerations as well as by suggestive evidence of an FQH nematic in tilted field experiments, we have sought evidence of such a nematic FQHE in a microscopic model of interacting electrons in the lowest Landau level at filling factor 1/3. Using a family of anisotropic Laughlin states as trial wave functions, we find a continuous quantum phase transition between the isotropic Laughlin liquid and the FQH nematic. Results of numerical exact diagonalization also suggest that rotational symmetry is spontaneously broken, and that the phase diagram of the model contains both a nematic and a stripe phase.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1607.02178</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076231232
source Publicly Available Content Database
subjects Mathematical models
Phase diagrams
Phase transitions
Quantum theory
Variations
Wave functions
title Evidence of a fractional quantum Hall nematic phase in a microscopic model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20a%20fractional%20quantum%20Hall%20nematic%20phase%20in%20a%20microscopic%20model&rft.jtitle=arXiv.org&rft.au=Regnault,%20N&rft.date=2017-07-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1607.02178&rft_dat=%3Cproquest%3E2076231232%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-2a6c38938b80d9ab4c1b9b4522014bcd25d4a4b92d7a37162027290a348849d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076231232&rft_id=info:pmid/&rfr_iscdi=true