Loading…

Chemotaxis model with subcritical exponent in nonlocal reaction

This paper deals with a parabolic-elliptic chemotaxis system with nonlocal type of source in the whole space. It's proved that the initial value problem possesses a unique global solution which is uniformly bounded. Here we identify the exponents regimes of nonlinear reaction and aggregation in...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-11
Main Authors: Bian, Shen, Chen, Li, Latos, Evangelos A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bian, Shen
Chen, Li
Latos, Evangelos A
description This paper deals with a parabolic-elliptic chemotaxis system with nonlocal type of source in the whole space. It's proved that the initial value problem possesses a unique global solution which is uniformly bounded. Here we identify the exponents regimes of nonlinear reaction and aggregation in such a way that their scaling and the diffusion term coincide (see Introduction). Comparing to the classical KS model (without the source term), it's shown that how energy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solution without any restriction on the initial data.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076288274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076288274</sourcerecordid><originalsourceid>FETCH-proquest_journals_20762882743</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxJf-di6K4gHcl1ifNCV9ryYp9vgqeABXAzOzEglofcjqHGAj0hAGpRSUFRSFTsSx6XHkaBYb5Mh3dPJlYy_DfOu8jbYzTuIyMSFFaUkSk-Ov9Gi6aJl2Yv0wLmD641bsz6drc8kmz88ZQ2wHnj19UguqKqGuocr1f9cbUKA5ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076288274</pqid></control><display><type>article</type><title>Chemotaxis model with subcritical exponent in nonlocal reaction</title><source>Publicly Available Content Database</source><creator>Bian, Shen ; Chen, Li ; Latos, Evangelos A</creator><creatorcontrib>Bian, Shen ; Chen, Li ; Latos, Evangelos A</creatorcontrib><description>This paper deals with a parabolic-elliptic chemotaxis system with nonlocal type of source in the whole space. It's proved that the initial value problem possesses a unique global solution which is uniformly bounded. Here we identify the exponents regimes of nonlinear reaction and aggregation in such a way that their scaling and the diffusion term coincide (see Introduction). Comparing to the classical KS model (without the source term), it's shown that how energy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solution without any restriction on the initial data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary value problems</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076288274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bian, Shen</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Latos, Evangelos A</creatorcontrib><title>Chemotaxis model with subcritical exponent in nonlocal reaction</title><title>arXiv.org</title><description>This paper deals with a parabolic-elliptic chemotaxis system with nonlocal type of source in the whole space. It's proved that the initial value problem possesses a unique global solution which is uniformly bounded. Here we identify the exponents regimes of nonlinear reaction and aggregation in such a way that their scaling and the diffusion term coincide (see Introduction). Comparing to the classical KS model (without the source term), it's shown that how energy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solution without any restriction on the initial data.</description><subject>Boundary value problems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxJf-di6K4gHcl1ifNCV9ryYp9vgqeABXAzOzEglofcjqHGAj0hAGpRSUFRSFTsSx6XHkaBYb5Mh3dPJlYy_DfOu8jbYzTuIyMSFFaUkSk-Ov9Gi6aJl2Yv0wLmD641bsz6drc8kmz88ZQ2wHnj19UguqKqGuocr1f9cbUKA5ag</recordid><startdate>20171127</startdate><enddate>20171127</enddate><creator>Bian, Shen</creator><creator>Chen, Li</creator><creator>Latos, Evangelos A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171127</creationdate><title>Chemotaxis model with subcritical exponent in nonlocal reaction</title><author>Bian, Shen ; Chen, Li ; Latos, Evangelos A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20762882743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary value problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bian, Shen</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Latos, Evangelos A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Shen</au><au>Chen, Li</au><au>Latos, Evangelos A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Chemotaxis model with subcritical exponent in nonlocal reaction</atitle><jtitle>arXiv.org</jtitle><date>2017-11-27</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>This paper deals with a parabolic-elliptic chemotaxis system with nonlocal type of source in the whole space. It's proved that the initial value problem possesses a unique global solution which is uniformly bounded. Here we identify the exponents regimes of nonlinear reaction and aggregation in such a way that their scaling and the diffusion term coincide (see Introduction). Comparing to the classical KS model (without the source term), it's shown that how energy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solution without any restriction on the initial data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076288274
source Publicly Available Content Database
subjects Boundary value problems
title Chemotaxis model with subcritical exponent in nonlocal reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Chemotaxis%20model%20with%20subcritical%20exponent%20in%20nonlocal%20reaction&rft.jtitle=arXiv.org&rft.au=Bian,%20Shen&rft.date=2017-11-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076288274%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20762882743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076288274&rft_id=info:pmid/&rfr_iscdi=true