Loading…
Derived Azumaya algebras and twisted \(K\)-theory
We construct a relative version of topological \(K\)-theory of dg categories over an arbitrary quasi-compact, quasi-separated \(\mathbb{C}\)-scheme \(X\). This has as input a \(\text{Perf}(X)\)-linear stable \(\infty\)-category and output a sheaf of spectra on \(X(\mathbb{C})\), the space of complex...
Saved in:
Published in: | arXiv.org 2019-04 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Moulinos, Tasos |
description | We construct a relative version of topological \(K\)-theory of dg categories over an arbitrary quasi-compact, quasi-separated \(\mathbb{C}\)-scheme \(X\). This has as input a \(\text{Perf}(X)\)-linear stable \(\infty\)-category and output a sheaf of spectra on \(X(\mathbb{C})\), the space of complex points of \(X\). We then characterize the values of this functor on inputs of the form \(Mod_{A}^{\omega}\), for \(A\) a derived Azumaya algebra over \(X\). In such cases we show that this coincides with the \(\alpha\)-twisted topological \(K\)-theory of \(X(\mathbb{C})\) for some appropriately defined twist of \(K\)-theory. We use this to provide a topological analogue of a classical result of Quillen's on the algebraic \(K\)-theory of Severi-Brauer varieties. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076318304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076318304</sourcerecordid><originalsourceid>FETCH-proquest_journals_20763183043</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdEktyixLTVFwrCrNTaxMVEjMSU9NKkosVkjMS1EoKc8sLgFKxmh4x2jqlmSk5hdV8jCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBuZmxoYWxgYkxcaoAX9UyyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076318304</pqid></control><display><type>article</type><title>Derived Azumaya algebras and twisted \(K\)-theory</title><source>Publicly Available Content (ProQuest)</source><creator>Moulinos, Tasos</creator><creatorcontrib>Moulinos, Tasos</creatorcontrib><description>We construct a relative version of topological \(K\)-theory of dg categories over an arbitrary quasi-compact, quasi-separated \(\mathbb{C}\)-scheme \(X\). This has as input a \(\text{Perf}(X)\)-linear stable \(\infty\)-category and output a sheaf of spectra on \(X(\mathbb{C})\), the space of complex points of \(X\). We then characterize the values of this functor on inputs of the form \(Mod_{A}^{\omega}\), for \(A\) a derived Azumaya algebra over \(X\). In such cases we show that this coincides with the \(\alpha\)-twisted topological \(K\)-theory of \(X(\mathbb{C})\) for some appropriately defined twist of \(K\)-theory. We use this to provide a topological analogue of a classical result of Quillen's on the algebraic \(K\)-theory of Severi-Brauer varieties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Topology</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076318304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Moulinos, Tasos</creatorcontrib><title>Derived Azumaya algebras and twisted \(K\)-theory</title><title>arXiv.org</title><description>We construct a relative version of topological \(K\)-theory of dg categories over an arbitrary quasi-compact, quasi-separated \(\mathbb{C}\)-scheme \(X\). This has as input a \(\text{Perf}(X)\)-linear stable \(\infty\)-category and output a sheaf of spectra on \(X(\mathbb{C})\), the space of complex points of \(X\). We then characterize the values of this functor on inputs of the form \(Mod_{A}^{\omega}\), for \(A\) a derived Azumaya algebra over \(X\). In such cases we show that this coincides with the \(\alpha\)-twisted topological \(K\)-theory of \(X(\mathbb{C})\) for some appropriately defined twist of \(K\)-theory. We use this to provide a topological analogue of a classical result of Quillen's on the algebraic \(K\)-theory of Severi-Brauer varieties.</description><subject>Algebra</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdEktyixLTVFwrCrNTaxMVEjMSU9NKkosVkjMS1EoKc8sLgFKxmh4x2jqlmSk5hdV8jCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGBuZmxoYWxgYkxcaoAX9UyyQ</recordid><startdate>20190424</startdate><enddate>20190424</enddate><creator>Moulinos, Tasos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190424</creationdate><title>Derived Azumaya algebras and twisted \(K\)-theory</title><author>Moulinos, Tasos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20763183043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Moulinos, Tasos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulinos, Tasos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Derived Azumaya algebras and twisted \(K\)-theory</atitle><jtitle>arXiv.org</jtitle><date>2019-04-24</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We construct a relative version of topological \(K\)-theory of dg categories over an arbitrary quasi-compact, quasi-separated \(\mathbb{C}\)-scheme \(X\). This has as input a \(\text{Perf}(X)\)-linear stable \(\infty\)-category and output a sheaf of spectra on \(X(\mathbb{C})\), the space of complex points of \(X\). We then characterize the values of this functor on inputs of the form \(Mod_{A}^{\omega}\), for \(A\) a derived Azumaya algebra over \(X\). In such cases we show that this coincides with the \(\alpha\)-twisted topological \(K\)-theory of \(X(\mathbb{C})\) for some appropriately defined twist of \(K\)-theory. We use this to provide a topological analogue of a classical result of Quillen's on the algebraic \(K\)-theory of Severi-Brauer varieties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076318304 |
source | Publicly Available Content (ProQuest) |
subjects | Algebra Topology |
title | Derived Azumaya algebras and twisted \(K\)-theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Derived%20Azumaya%20algebras%20and%20twisted%20%5C(K%5C)-theory&rft.jtitle=arXiv.org&rft.au=Moulinos,%20Tasos&rft.date=2019-04-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076318304%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20763183043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076318304&rft_id=info:pmid/&rfr_iscdi=true |