Loading…
High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap
We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficie...
Saved in:
Published in: | arXiv.org 2017-12 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cheng, Sheng He, Xiaodong Guo, Ruijun Wang, Kunpeng Xu, Peng Xiong, Zongyuan Liu, Min Wang, Jin Zhan, Mingsheng |
description | We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array. |
doi_str_mv | 10.48550/arxiv.1712.06306 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076328213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076328213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-491da29c4f41fecf2c11dfb124f17a97f58b89567b806a901a16dba2d19975a73</originalsourceid><addsrcrecordid>eNotjctuwjAURK1KlYooH9Cdpa5Dfa9jO14iWh4SLYuyRzeJDUZpEhKnav--oLIaaTTnDGNPIKZpppR4oe4nfE_BAE6FlkLfsRFKCUmWIj6wSd-fhBCoDSolR6xchcORL0LpqhB_-WeoD5VLzkMeIl9SdD1vPKdbzz_cEDuq-Cw2XzzUPB4df6dDKJJ1HV3dXxXbNobisnkNbXNBdh21j-zeU9W7yS3HbLd4281XyWa7XM9nm4QUyiS1UBLaIvUpeFd4LABKnwOmHgxZ41WWZ1Zpk2dCkxVAoMucsARrjSIjx-z5X9t2zXlwfdyfmqGrL497FEZLzBCk_AOvkFaJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076328213</pqid></control><display><type>article</type><title>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</title><source>Publicly Available Content (ProQuest)</source><creator>Cheng, Sheng ; He, Xiaodong ; Guo, Ruijun ; Wang, Kunpeng ; Xu, Peng ; Xiong, Zongyuan ; Liu, Min ; Wang, Jin ; Zhan, Mingsheng</creator><creatorcontrib>Cheng, Sheng ; He, Xiaodong ; Guo, Ruijun ; Wang, Kunpeng ; Xu, Peng ; Xiong, Zongyuan ; Liu, Min ; Wang, Jin ; Zhan, Mingsheng</creatorcontrib><description>We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.06306</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dipoles ; Errors ; Fault tolerance ; Gates ; Neutral atoms ; Performance enhancement ; Quantum computers ; Quantum theory ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076328213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cheng, Sheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Guo, Ruijun</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xiong, Zongyuan</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhan, Mingsheng</creatorcontrib><title>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</title><title>arXiv.org</title><description>We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array.</description><subject>Dipoles</subject><subject>Errors</subject><subject>Fault tolerance</subject><subject>Gates</subject><subject>Neutral atoms</subject><subject>Performance enhancement</subject><subject>Quantum computers</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctuwjAURK1KlYooH9Cdpa5Dfa9jO14iWh4SLYuyRzeJDUZpEhKnav--oLIaaTTnDGNPIKZpppR4oe4nfE_BAE6FlkLfsRFKCUmWIj6wSd-fhBCoDSolR6xchcORL0LpqhB_-WeoD5VLzkMeIl9SdD1vPKdbzz_cEDuq-Cw2XzzUPB4df6dDKJJ1HV3dXxXbNobisnkNbXNBdh21j-zeU9W7yS3HbLd4281XyWa7XM9nm4QUyiS1UBLaIvUpeFd4LABKnwOmHgxZ41WWZ1Zpk2dCkxVAoMucsARrjSIjx-z5X9t2zXlwfdyfmqGrL497FEZLzBCk_AOvkFaJ</recordid><startdate>20171218</startdate><enddate>20171218</enddate><creator>Cheng, Sheng</creator><creator>He, Xiaodong</creator><creator>Guo, Ruijun</creator><creator>Wang, Kunpeng</creator><creator>Xu, Peng</creator><creator>Xiong, Zongyuan</creator><creator>Liu, Min</creator><creator>Wang, Jin</creator><creator>Zhan, Mingsheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171218</creationdate><title>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</title><author>Cheng, Sheng ; He, Xiaodong ; Guo, Ruijun ; Wang, Kunpeng ; Xu, Peng ; Xiong, Zongyuan ; Liu, Min ; Wang, Jin ; Zhan, Mingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-491da29c4f41fecf2c11dfb124f17a97f58b89567b806a901a16dba2d19975a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dipoles</topic><topic>Errors</topic><topic>Fault tolerance</topic><topic>Gates</topic><topic>Neutral atoms</topic><topic>Performance enhancement</topic><topic>Quantum computers</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Sheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Guo, Ruijun</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xiong, Zongyuan</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhan, Mingsheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Sheng</au><au>He, Xiaodong</au><au>Guo, Ruijun</au><au>Wang, Kunpeng</au><au>Xu, Peng</au><au>Xiong, Zongyuan</au><au>Liu, Min</au><au>Wang, Jin</au><au>Zhan, Mingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</atitle><jtitle>arXiv.org</jtitle><date>2017-12-18</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.06306</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076328213 |
source | Publicly Available Content (ProQuest) |
subjects | Dipoles Errors Fault tolerance Gates Neutral atoms Performance enhancement Quantum computers Quantum theory Qubits (quantum computing) |
title | High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Fidelity%20Single-qubit%20Gates%20of%20a%20Single%20Neutral%20Atom%20in%20the%20Magic-Intensity%20Optical%20Dipole%20Trap&rft.jtitle=arXiv.org&rft.au=Cheng,%20Sheng&rft.date=2017-12-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.06306&rft_dat=%3Cproquest%3E2076328213%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-491da29c4f41fecf2c11dfb124f17a97f58b89567b806a901a16dba2d19975a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076328213&rft_id=info:pmid/&rfr_iscdi=true |