Loading…

High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap

We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficie...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-12
Main Authors: Cheng, Sheng, He, Xiaodong, Guo, Ruijun, Wang, Kunpeng, Xu, Peng, Xiong, Zongyuan, Liu, Min, Wang, Jin, Zhan, Mingsheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cheng, Sheng
He, Xiaodong
Guo, Ruijun
Wang, Kunpeng
Xu, Peng
Xiong, Zongyuan
Liu, Min
Wang, Jin
Zhan, Mingsheng
description We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array.
doi_str_mv 10.48550/arxiv.1712.06306
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076328213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076328213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-491da29c4f41fecf2c11dfb124f17a97f58b89567b806a901a16dba2d19975a73</originalsourceid><addsrcrecordid>eNotjctuwjAURK1KlYooH9Cdpa5Dfa9jO14iWh4SLYuyRzeJDUZpEhKnav--oLIaaTTnDGNPIKZpppR4oe4nfE_BAE6FlkLfsRFKCUmWIj6wSd-fhBCoDSolR6xchcORL0LpqhB_-WeoD5VLzkMeIl9SdD1vPKdbzz_cEDuq-Cw2XzzUPB4df6dDKJJ1HV3dXxXbNobisnkNbXNBdh21j-zeU9W7yS3HbLd4281XyWa7XM9nm4QUyiS1UBLaIvUpeFd4LABKnwOmHgxZ41WWZ1Zpk2dCkxVAoMucsARrjSIjx-z5X9t2zXlwfdyfmqGrL497FEZLzBCk_AOvkFaJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076328213</pqid></control><display><type>article</type><title>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</title><source>Publicly Available Content (ProQuest)</source><creator>Cheng, Sheng ; He, Xiaodong ; Guo, Ruijun ; Wang, Kunpeng ; Xu, Peng ; Xiong, Zongyuan ; Liu, Min ; Wang, Jin ; Zhan, Mingsheng</creator><creatorcontrib>Cheng, Sheng ; He, Xiaodong ; Guo, Ruijun ; Wang, Kunpeng ; Xu, Peng ; Xiong, Zongyuan ; Liu, Min ; Wang, Jin ; Zhan, Mingsheng</creatorcontrib><description>We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.06306</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dipoles ; Errors ; Fault tolerance ; Gates ; Neutral atoms ; Performance enhancement ; Quantum computers ; Quantum theory ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076328213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cheng, Sheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Guo, Ruijun</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xiong, Zongyuan</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhan, Mingsheng</creatorcontrib><title>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</title><title>arXiv.org</title><description>We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array.</description><subject>Dipoles</subject><subject>Errors</subject><subject>Fault tolerance</subject><subject>Gates</subject><subject>Neutral atoms</subject><subject>Performance enhancement</subject><subject>Quantum computers</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctuwjAURK1KlYooH9Cdpa5Dfa9jO14iWh4SLYuyRzeJDUZpEhKnav--oLIaaTTnDGNPIKZpppR4oe4nfE_BAE6FlkLfsRFKCUmWIj6wSd-fhBCoDSolR6xchcORL0LpqhB_-WeoD5VLzkMeIl9SdD1vPKdbzz_cEDuq-Cw2XzzUPB4df6dDKJJ1HV3dXxXbNobisnkNbXNBdh21j-zeU9W7yS3HbLd4281XyWa7XM9nm4QUyiS1UBLaIvUpeFd4LABKnwOmHgxZ41WWZ1Zpk2dCkxVAoMucsARrjSIjx-z5X9t2zXlwfdyfmqGrL497FEZLzBCk_AOvkFaJ</recordid><startdate>20171218</startdate><enddate>20171218</enddate><creator>Cheng, Sheng</creator><creator>He, Xiaodong</creator><creator>Guo, Ruijun</creator><creator>Wang, Kunpeng</creator><creator>Xu, Peng</creator><creator>Xiong, Zongyuan</creator><creator>Liu, Min</creator><creator>Wang, Jin</creator><creator>Zhan, Mingsheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171218</creationdate><title>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</title><author>Cheng, Sheng ; He, Xiaodong ; Guo, Ruijun ; Wang, Kunpeng ; Xu, Peng ; Xiong, Zongyuan ; Liu, Min ; Wang, Jin ; Zhan, Mingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-491da29c4f41fecf2c11dfb124f17a97f58b89567b806a901a16dba2d19975a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dipoles</topic><topic>Errors</topic><topic>Fault tolerance</topic><topic>Gates</topic><topic>Neutral atoms</topic><topic>Performance enhancement</topic><topic>Quantum computers</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Sheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Guo, Ruijun</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xiong, Zongyuan</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhan, Mingsheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Sheng</au><au>He, Xiaodong</au><au>Guo, Ruijun</au><au>Wang, Kunpeng</au><au>Xu, Peng</au><au>Xiong, Zongyuan</au><au>Liu, Min</au><au>Wang, Jin</au><au>Zhan, Mingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap</atitle><jtitle>arXiv.org</jtitle><date>2017-12-18</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We demonstrate high fidelity single-qubit gate operation in a trapped single neutral atom. The atom is trapped in the recently invented magic-intensity optical dipole trap (MI-ODT) with more stable magnetic field. The MI-ODT efficiently mitigates the detrimental effects of light shifts thus sufficiently improves the performance of single qubit-gates. The gates are driven with microwave, and the fidelity of gate operation is characterized by using the randomized benchmarking method. We obtain an average error per Clifford gate of \(3.0(7)\times10^{-5}\) which is much below the error threshold (\(10^{-4}\)) for fault-tolerance. This error is found to be dominated by qubit dephasing, and the corresponding coherence time relevant to the Clifford gates is also measured experimentally. This work is an essential step toward the construction of a scalable quantum computer with neutral atoms trapped in an MI-ODT array.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.06306</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076328213
source Publicly Available Content (ProQuest)
subjects Dipoles
Errors
Fault tolerance
Gates
Neutral atoms
Performance enhancement
Quantum computers
Quantum theory
Qubits (quantum computing)
title High Fidelity Single-qubit Gates of a Single Neutral Atom in the Magic-Intensity Optical Dipole Trap
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Fidelity%20Single-qubit%20Gates%20of%20a%20Single%20Neutral%20Atom%20in%20the%20Magic-Intensity%20Optical%20Dipole%20Trap&rft.jtitle=arXiv.org&rft.au=Cheng,%20Sheng&rft.date=2017-12-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.06306&rft_dat=%3Cproquest%3E2076328213%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-491da29c4f41fecf2c11dfb124f17a97f58b89567b806a901a16dba2d19975a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076328213&rft_id=info:pmid/&rfr_iscdi=true