Loading…

Separating Para and Ortho Water

Water exists as two nuclear-spin isomers, para and ortho, determined by the overall spin of its two hydrogen nuclei. For isolated water molecules the conversion between these isomers is forbidden and they act as different molecular species. Yet, these species are not readily separable, and little is...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-10
Main Authors: Horke, Daniel A, Yuan-Pin, Chang, Długołęcki, Karol, Küpper, Jochen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Horke, Daniel A
Yuan-Pin, Chang
Długołęcki, Karol
Küpper, Jochen
description Water exists as two nuclear-spin isomers, para and ortho, determined by the overall spin of its two hydrogen nuclei. For isolated water molecules the conversion between these isomers is forbidden and they act as different molecular species. Yet, these species are not readily separable, and little is known about their specific physical and chemical properties, conversion mechanisms, or interactions. Here we demonstrate the production of isolated samples of both spin isomers in pure beams of para and ortho water, with both species in their respective absolute ground state. These single-quantum-state samples are ideal targets for unraveling spin-conversion mechanisms, for precision spectroscopy and fundamental-symmetry-breaking studies, and for spin-enhanced applications, e. g., laboratory astrophysics and -chemistry or hypersensitized NMR experiments.
doi_str_mv 10.48550/arxiv.1407.2056
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076371971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076371971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-297d0c9aea4f600bcea1500a3a4882b3a4e6430b2378fe1222599d438a0a34fe3</originalsourceid><addsrcrecordid>eNotjctKw1AURS-CYKmdOzPgOPE87nMoxRcUKlhwWE6aE22RpN6k4ucb0NHag8VexlwhVDY6B7eSf_bfFVoIFYHzZ2ZGzFhGS3RhFsNwAADygZzjmbl-1aNkGffde_EyjUK6pljn8aMv3mTUfGnOW_kcdPHPudk83G-WT-Vq_fi8vFuV4hBLSqGBXRIV23qAeqeCDkBYbIxUT1BvGWriEFtFInIpNZajTI5tlefm5u_2mPuvkw7j9tCfcjcVtwTBc8AUkH8BOEc9RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076371971</pqid></control><display><type>article</type><title>Separating Para and Ortho Water</title><source>Publicly Available Content Database</source><creator>Horke, Daniel A ; Yuan-Pin, Chang ; Długołęcki, Karol ; Küpper, Jochen</creator><creatorcontrib>Horke, Daniel A ; Yuan-Pin, Chang ; Długołęcki, Karol ; Küpper, Jochen</creatorcontrib><description>Water exists as two nuclear-spin isomers, para and ortho, determined by the overall spin of its two hydrogen nuclei. For isolated water molecules the conversion between these isomers is forbidden and they act as different molecular species. Yet, these species are not readily separable, and little is known about their specific physical and chemical properties, conversion mechanisms, or interactions. Here we demonstrate the production of isolated samples of both spin isomers in pure beams of para and ortho water, with both species in their respective absolute ground state. These single-quantum-state samples are ideal targets for unraveling spin-conversion mechanisms, for precision spectroscopy and fundamental-symmetry-breaking studies, and for spin-enhanced applications, e. g., laboratory astrophysics and -chemistry or hypersensitized NMR experiments.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1407.2056</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astrophysics ; Chemical properties ; Conversion ; Isomers ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Water chemistry</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076371971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Horke, Daniel A</creatorcontrib><creatorcontrib>Yuan-Pin, Chang</creatorcontrib><creatorcontrib>Długołęcki, Karol</creatorcontrib><creatorcontrib>Küpper, Jochen</creatorcontrib><title>Separating Para and Ortho Water</title><title>arXiv.org</title><description>Water exists as two nuclear-spin isomers, para and ortho, determined by the overall spin of its two hydrogen nuclei. For isolated water molecules the conversion between these isomers is forbidden and they act as different molecular species. Yet, these species are not readily separable, and little is known about their specific physical and chemical properties, conversion mechanisms, or interactions. Here we demonstrate the production of isolated samples of both spin isomers in pure beams of para and ortho water, with both species in their respective absolute ground state. These single-quantum-state samples are ideal targets for unraveling spin-conversion mechanisms, for precision spectroscopy and fundamental-symmetry-breaking studies, and for spin-enhanced applications, e. g., laboratory astrophysics and -chemistry or hypersensitized NMR experiments.</description><subject>Astrophysics</subject><subject>Chemical properties</subject><subject>Conversion</subject><subject>Isomers</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Water chemistry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw1AURS-CYKmdOzPgOPE87nMoxRcUKlhwWE6aE22RpN6k4ucb0NHag8VexlwhVDY6B7eSf_bfFVoIFYHzZ2ZGzFhGS3RhFsNwAADygZzjmbl-1aNkGffde_EyjUK6pljn8aMv3mTUfGnOW_kcdPHPudk83G-WT-Vq_fi8vFuV4hBLSqGBXRIV23qAeqeCDkBYbIxUT1BvGWriEFtFInIpNZajTI5tlefm5u_2mPuvkw7j9tCfcjcVtwTBc8AUkH8BOEc9RA</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Horke, Daniel A</creator><creator>Yuan-Pin, Chang</creator><creator>Długołęcki, Karol</creator><creator>Küpper, Jochen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171015</creationdate><title>Separating Para and Ortho Water</title><author>Horke, Daniel A ; Yuan-Pin, Chang ; Długołęcki, Karol ; Küpper, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-297d0c9aea4f600bcea1500a3a4882b3a4e6430b2378fe1222599d438a0a34fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>Chemical properties</topic><topic>Conversion</topic><topic>Isomers</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Water chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Horke, Daniel A</creatorcontrib><creatorcontrib>Yuan-Pin, Chang</creatorcontrib><creatorcontrib>Długołęcki, Karol</creatorcontrib><creatorcontrib>Küpper, Jochen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horke, Daniel A</au><au>Yuan-Pin, Chang</au><au>Długołęcki, Karol</au><au>Küpper, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating Para and Ortho Water</atitle><jtitle>arXiv.org</jtitle><date>2017-10-15</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Water exists as two nuclear-spin isomers, para and ortho, determined by the overall spin of its two hydrogen nuclei. For isolated water molecules the conversion between these isomers is forbidden and they act as different molecular species. Yet, these species are not readily separable, and little is known about their specific physical and chemical properties, conversion mechanisms, or interactions. Here we demonstrate the production of isolated samples of both spin isomers in pure beams of para and ortho water, with both species in their respective absolute ground state. These single-quantum-state samples are ideal targets for unraveling spin-conversion mechanisms, for precision spectroscopy and fundamental-symmetry-breaking studies, and for spin-enhanced applications, e. g., laboratory astrophysics and -chemistry or hypersensitized NMR experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1407.2056</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076371971
source Publicly Available Content Database
subjects Astrophysics
Chemical properties
Conversion
Isomers
NMR
Nuclear magnetic resonance
Organic chemistry
Water chemistry
title Separating Para and Ortho Water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20Para%20and%20Ortho%20Water&rft.jtitle=arXiv.org&rft.au=Horke,%20Daniel%20A&rft.date=2017-10-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1407.2056&rft_dat=%3Cproquest%3E2076371971%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-297d0c9aea4f600bcea1500a3a4882b3a4e6430b2378fe1222599d438a0a34fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076371971&rft_id=info:pmid/&rfr_iscdi=true