Loading…
Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes
Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to sati...
Saved in:
Published in: | arXiv.org 2017-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Clausen, Dustin Mathew, Akhil Naumann, Niko Noel, Justin |
description | Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076391702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076391702</sourcerecordid><originalsourceid>FETCH-proquest_journals_20763917023</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xw0SEQE9vqKFUR3MSxUGK8rS3lRvMz-PY6-ABOZ_jOiCVSqRXfrKWcsNT7Xggh80JmmUpYuUdvkAJ0BHpo8eZ0Z6BanKslDw-07g2a7qDBWOrRhOgQbAO76C11_GJbQj9j40YPHtNfp2x-PFzLE386-4roQ93b6OhLtRRFrrarQkj13_UBZlU5Cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076391702</pqid></control><display><type>article</type><title>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</title><source>Publicly Available Content Database</source><creator>Clausen, Dustin ; Mathew, Akhil ; Naumann, Niko ; Noel, Justin</creator><creatorcontrib>Clausen, Dustin ; Mathew, Akhil ; Naumann, Niko ; Noel, Justin</creatorcontrib><description>Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Descent ; Equivalence ; Localization</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076391702?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Clausen, Dustin</creatorcontrib><creatorcontrib>Mathew, Akhil</creatorcontrib><creatorcontrib>Naumann, Niko</creatorcontrib><creatorcontrib>Noel, Justin</creatorcontrib><title>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</title><title>arXiv.org</title><description>Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.</description><subject>Algebra</subject><subject>Descent</subject><subject>Equivalence</subject><subject>Localization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xw0SEQE9vqKFUR3MSxUGK8rS3lRvMz-PY6-ABOZ_jOiCVSqRXfrKWcsNT7Xggh80JmmUpYuUdvkAJ0BHpo8eZ0Z6BanKslDw-07g2a7qDBWOrRhOgQbAO76C11_GJbQj9j40YPHtNfp2x-PFzLE386-4roQ93b6OhLtRRFrrarQkj13_UBZlU5Cg</recordid><startdate>20171122</startdate><enddate>20171122</enddate><creator>Clausen, Dustin</creator><creator>Mathew, Akhil</creator><creator>Naumann, Niko</creator><creator>Noel, Justin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171122</creationdate><title>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</title><author>Clausen, Dustin ; Mathew, Akhil ; Naumann, Niko ; Noel, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20763917023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Descent</topic><topic>Equivalence</topic><topic>Localization</topic><toplevel>online_resources</toplevel><creatorcontrib>Clausen, Dustin</creatorcontrib><creatorcontrib>Mathew, Akhil</creatorcontrib><creatorcontrib>Naumann, Niko</creatorcontrib><creatorcontrib>Noel, Justin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clausen, Dustin</au><au>Mathew, Akhil</au><au>Naumann, Niko</au><au>Noel, Justin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</atitle><jtitle>arXiv.org</jtitle><date>2017-11-22</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076391702 |
source | Publicly Available Content Database |
subjects | Algebra Descent Equivalence Localization |
title | Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Descent%20in%20algebraic%20%5C(K%5C)-theory%20and%20a%20conjecture%20of%20Ausoni-Rognes&rft.jtitle=arXiv.org&rft.au=Clausen,%20Dustin&rft.date=2017-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076391702%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20763917023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076391702&rft_id=info:pmid/&rfr_iscdi=true |