Loading…

Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes

Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to sati...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-11
Main Authors: Clausen, Dustin, Mathew, Akhil, Naumann, Niko, Noel, Justin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Clausen, Dustin
Mathew, Akhil
Naumann, Niko
Noel, Justin
description Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076391702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076391702</sourcerecordid><originalsourceid>FETCH-proquest_journals_20763917023</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xw0SEQE9vqKFUR3MSxUGK8rS3lRvMz-PY6-ABOZ_jOiCVSqRXfrKWcsNT7Xggh80JmmUpYuUdvkAJ0BHpo8eZ0Z6BanKslDw-07g2a7qDBWOrRhOgQbAO76C11_GJbQj9j40YPHtNfp2x-PFzLE386-4roQ93b6OhLtRRFrrarQkj13_UBZlU5Cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076391702</pqid></control><display><type>article</type><title>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</title><source>Publicly Available Content Database</source><creator>Clausen, Dustin ; Mathew, Akhil ; Naumann, Niko ; Noel, Justin</creator><creatorcontrib>Clausen, Dustin ; Mathew, Akhil ; Naumann, Niko ; Noel, Justin</creatorcontrib><description>Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Descent ; Equivalence ; Localization</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076391702?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Clausen, Dustin</creatorcontrib><creatorcontrib>Mathew, Akhil</creatorcontrib><creatorcontrib>Naumann, Niko</creatorcontrib><creatorcontrib>Noel, Justin</creatorcontrib><title>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</title><title>arXiv.org</title><description>Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.</description><subject>Algebra</subject><subject>Descent</subject><subject>Equivalence</subject><subject>Localization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xw0SEQE9vqKFUR3MSxUGK8rS3lRvMz-PY6-ABOZ_jOiCVSqRXfrKWcsNT7Xggh80JmmUpYuUdvkAJ0BHpo8eZ0Z6BanKslDw-07g2a7qDBWOrRhOgQbAO76C11_GJbQj9j40YPHtNfp2x-PFzLE386-4roQ93b6OhLtRRFrrarQkj13_UBZlU5Cg</recordid><startdate>20171122</startdate><enddate>20171122</enddate><creator>Clausen, Dustin</creator><creator>Mathew, Akhil</creator><creator>Naumann, Niko</creator><creator>Noel, Justin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171122</creationdate><title>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</title><author>Clausen, Dustin ; Mathew, Akhil ; Naumann, Niko ; Noel, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20763917023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Descent</topic><topic>Equivalence</topic><topic>Localization</topic><toplevel>online_resources</toplevel><creatorcontrib>Clausen, Dustin</creatorcontrib><creatorcontrib>Mathew, Akhil</creatorcontrib><creatorcontrib>Naumann, Niko</creatorcontrib><creatorcontrib>Noel, Justin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clausen, Dustin</au><au>Mathew, Akhil</au><au>Naumann, Niko</au><au>Noel, Justin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes</atitle><jtitle>arXiv.org</jtitle><date>2017-11-22</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Let \(A \to B\) be a \(G\)-Galois extension of rings, or more generally of \(\mathbb{E}_\infty\)-ring spectra in the sense of Rognes. A basic question in algebraic \(K\)-theory asks how close the map \(K(A) \to K(B)^{hG}\) is to being an equivalence, i.e., how close algebraic \(K\)-theory is to satisfying Galois descent. An elementary argument with the transfer shows that this equivalence is true rationally in most cases of interest. Motivated by the classical descent theorem of Thomason, one also expects such a result after periodic localization. We formulate and prove a general result which enables one to promote rational descent statements as above into descent statements after periodic localization. This reduces the localized descent problem to establishing an elementary condition on \(K_0(-)\otimes \mathbb{Q}\). As applications, we prove various descent results in the periodic localized \(K\)-theory, \(TC\), \(THH\), etc. of structured ring spectra, and verify several cases of a conjecture of Ausoni and Rognes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076391702
source Publicly Available Content Database
subjects Algebra
Descent
Equivalence
Localization
title Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Descent%20in%20algebraic%20%5C(K%5C)-theory%20and%20a%20conjecture%20of%20Ausoni-Rognes&rft.jtitle=arXiv.org&rft.au=Clausen,%20Dustin&rft.date=2017-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076391702%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20763917023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076391702&rft_id=info:pmid/&rfr_iscdi=true