Loading…
QUARKS: Identification of large-scale Kronecker Vector-AutoRegressive models
In this paper we propose a Kronecker-based modeling for identifying the spatial-temporal dynamics of large sensor arrays. The class of Kronecker networks is defined for which we formulate a Vector Autoregressive model. Its coefficient-matrices are decomposed into a sum of Kronecker products. For a t...
Saved in:
Published in: | arXiv.org 2018-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sinquin, Baptiste Verhaegen, Michel |
description | In this paper we propose a Kronecker-based modeling for identifying the spatial-temporal dynamics of large sensor arrays. The class of Kronecker networks is defined for which we formulate a Vector Autoregressive model. Its coefficient-matrices are decomposed into a sum of Kronecker products. For a two-dimensional array of size \(N \times N\), and when the number of terms in the sum is small compared to \(N\), exploiting the Kronecker structure leads to high data compression. We propose an Alternating Least Squares algorithm to identify the coefficient matrices with \(\mathcal{O}(N^3N_t)\), where \(N_t\) is the number of temporal samples, instead of \(\mathcal{O}(N^6)\) in the unstructured case. This framework moreover allows for a convenient integration of more structure (e.g sparse, banded, Toeplitz) on the factor matrices. Numerical examples on atmospheric turbulence data has shown comparable performances with the unstructured least-squares estimation while the number of parameters is growing only linearly w.r.t. the number of nodes instead of quadratically in the full unstructured matrix case. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076404540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076404540</sourcerecordid><originalsourceid>FETCH-proquest_journals_20764045403</originalsourceid><addsrcrecordid>eNqNyk0LwiAcgHEJgkbtOwidBVO3RbcRRbEuvV6HuP-Gy7TU9fnr0Afo9Bx-zwgljPMFWQrGJigNoaeUsrxgWcYTdDhey1N1XuF9AzbqVisZtbPYtdhI3wEJShrAlXcW1B08voGKzpNyiO4EnYcQ9BvwwzVgwgyNW2kCpL9O0Xy7uax35Onda4AQ694N3n6pZrTIBRWZoPy_6wMGTj0h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076404540</pqid></control><display><type>article</type><title>QUARKS: Identification of large-scale Kronecker Vector-AutoRegressive models</title><source>Publicly Available Content Database</source><creator>Sinquin, Baptiste ; Verhaegen, Michel</creator><creatorcontrib>Sinquin, Baptiste ; Verhaegen, Michel</creatorcontrib><description>In this paper we propose a Kronecker-based modeling for identifying the spatial-temporal dynamics of large sensor arrays. The class of Kronecker networks is defined for which we formulate a Vector Autoregressive model. Its coefficient-matrices are decomposed into a sum of Kronecker products. For a two-dimensional array of size \(N \times N\), and when the number of terms in the sum is small compared to \(N\), exploiting the Kronecker structure leads to high data compression. We propose an Alternating Least Squares algorithm to identify the coefficient matrices with \(\mathcal{O}(N^3N_t)\), where \(N_t\) is the number of temporal samples, instead of \(\mathcal{O}(N^6)\) in the unstructured case. This framework moreover allows for a convenient integration of more structure (e.g sparse, banded, Toeplitz) on the factor matrices. Numerical examples on atmospheric turbulence data has shown comparable performances with the unstructured least-squares estimation while the number of parameters is growing only linearly w.r.t. the number of nodes instead of quadratically in the full unstructured matrix case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Atmospheric models ; Atmospheric turbulence ; Autoregressive models ; Data compression ; Economic models ; Least squares ; Matrix algebra ; Matrix methods ; Parameter estimation ; Regression analysis ; Sensor arrays</subject><ispartof>arXiv.org, 2018-10</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076404540?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sinquin, Baptiste</creatorcontrib><creatorcontrib>Verhaegen, Michel</creatorcontrib><title>QUARKS: Identification of large-scale Kronecker Vector-AutoRegressive models</title><title>arXiv.org</title><description>In this paper we propose a Kronecker-based modeling for identifying the spatial-temporal dynamics of large sensor arrays. The class of Kronecker networks is defined for which we formulate a Vector Autoregressive model. Its coefficient-matrices are decomposed into a sum of Kronecker products. For a two-dimensional array of size \(N \times N\), and when the number of terms in the sum is small compared to \(N\), exploiting the Kronecker structure leads to high data compression. We propose an Alternating Least Squares algorithm to identify the coefficient matrices with \(\mathcal{O}(N^3N_t)\), where \(N_t\) is the number of temporal samples, instead of \(\mathcal{O}(N^6)\) in the unstructured case. This framework moreover allows for a convenient integration of more structure (e.g sparse, banded, Toeplitz) on the factor matrices. Numerical examples on atmospheric turbulence data has shown comparable performances with the unstructured least-squares estimation while the number of parameters is growing only linearly w.r.t. the number of nodes instead of quadratically in the full unstructured matrix case.</description><subject>Algorithms</subject><subject>Atmospheric models</subject><subject>Atmospheric turbulence</subject><subject>Autoregressive models</subject><subject>Data compression</subject><subject>Economic models</subject><subject>Least squares</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Sensor arrays</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk0LwiAcgHEJgkbtOwidBVO3RbcRRbEuvV6HuP-Gy7TU9fnr0Afo9Bx-zwgljPMFWQrGJigNoaeUsrxgWcYTdDhey1N1XuF9AzbqVisZtbPYtdhI3wEJShrAlXcW1B08voGKzpNyiO4EnYcQ9BvwwzVgwgyNW2kCpL9O0Xy7uax35Onda4AQ694N3n6pZrTIBRWZoPy_6wMGTj0h</recordid><startdate>20181007</startdate><enddate>20181007</enddate><creator>Sinquin, Baptiste</creator><creator>Verhaegen, Michel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181007</creationdate><title>QUARKS: Identification of large-scale Kronecker Vector-AutoRegressive models</title><author>Sinquin, Baptiste ; Verhaegen, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20764045403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Atmospheric models</topic><topic>Atmospheric turbulence</topic><topic>Autoregressive models</topic><topic>Data compression</topic><topic>Economic models</topic><topic>Least squares</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Sensor arrays</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinquin, Baptiste</creatorcontrib><creatorcontrib>Verhaegen, Michel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinquin, Baptiste</au><au>Verhaegen, Michel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>QUARKS: Identification of large-scale Kronecker Vector-AutoRegressive models</atitle><jtitle>arXiv.org</jtitle><date>2018-10-07</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this paper we propose a Kronecker-based modeling for identifying the spatial-temporal dynamics of large sensor arrays. The class of Kronecker networks is defined for which we formulate a Vector Autoregressive model. Its coefficient-matrices are decomposed into a sum of Kronecker products. For a two-dimensional array of size \(N \times N\), and when the number of terms in the sum is small compared to \(N\), exploiting the Kronecker structure leads to high data compression. We propose an Alternating Least Squares algorithm to identify the coefficient matrices with \(\mathcal{O}(N^3N_t)\), where \(N_t\) is the number of temporal samples, instead of \(\mathcal{O}(N^6)\) in the unstructured case. This framework moreover allows for a convenient integration of more structure (e.g sparse, banded, Toeplitz) on the factor matrices. Numerical examples on atmospheric turbulence data has shown comparable performances with the unstructured least-squares estimation while the number of parameters is growing only linearly w.r.t. the number of nodes instead of quadratically in the full unstructured matrix case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076404540 |
source | Publicly Available Content Database |
subjects | Algorithms Atmospheric models Atmospheric turbulence Autoregressive models Data compression Economic models Least squares Matrix algebra Matrix methods Parameter estimation Regression analysis Sensor arrays |
title | QUARKS: Identification of large-scale Kronecker Vector-AutoRegressive models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=QUARKS:%20Identification%20of%20large-scale%20Kronecker%20Vector-AutoRegressive%20models&rft.jtitle=arXiv.org&rft.au=Sinquin,%20Baptiste&rft.date=2018-10-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076404540%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20764045403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076404540&rft_id=info:pmid/&rfr_iscdi=true |