Loading…
Image reconstruction from radially incomplete spherical Radon data
We study inversion of the spherical Radon transform with centers on a sphere (the data acquisition set). Such inversions are essential in various image reconstruction problems arising in medical, radar and sonar imaging. In the case of radially incomplete data, we show that the spherical Radon trans...
Saved in:
Published in: | arXiv.org 2017-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ambartsoumian, Gaik Rim Gouia-Zarrad Krishnan, Venkateswaran P Roy, Souvik |
description | We study inversion of the spherical Radon transform with centers on a sphere (the data acquisition set). Such inversions are essential in various image reconstruction problems arising in medical, radar and sonar imaging. In the case of radially incomplete data, we show that the spherical Radon transform can be uniquely inverted recovering the image function in spherical shells. Our result is valid when the support of the image function is inside the data acquisition sphere, outside that sphere, as well as on both sides of the sphere. Furthermore, in addition to the uniqueness result our method of proof provides reconstruction formulas for all those cases. We present a robust computational algorithm based on our inversion formula and demonstrate its accuracy and efficiency on several numerical examples. |
doi_str_mv | 10.48550/arxiv.1702.04784 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076413209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076413209</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-af3d6c2425bff024077da453313fae30c749b82a58429d9ba1145e0d3904b8553</originalsourceid><addsrcrecordid>eNotj0tLxDAUhYMgOIzzA9wFXLfe3iRNs9TBx8CAILMfbvPQDm0zJq3ov7egq7M5nO87jN1UUMpGKbij9N19lZUGLEHqRl6wFQpRFY1EvGKbnE8AgLVGpcSKPewGevc8eRvHPKXZTl0ceUhx4IlcR33_w7vRxuHc-8nzfP7wqbPU8zdyS9HRRNfsMlCf_eY_1-zw9HjYvhT71-fd9n5fkEJTUBCutihRtSEAStDakVSLmQjkBVgtTdsgqcXTONNSVUnlwQkDsl2OiTW7_Zs9p_g5-zwdT3FO40I8IuhaVgLBiF9dA0s-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076413209</pqid></control><display><type>article</type><title>Image reconstruction from radially incomplete spherical Radon data</title><source>ProQuest - Publicly Available Content Database</source><creator>Ambartsoumian, Gaik ; Rim Gouia-Zarrad ; Krishnan, Venkateswaran P ; Roy, Souvik</creator><creatorcontrib>Ambartsoumian, Gaik ; Rim Gouia-Zarrad ; Krishnan, Venkateswaran P ; Roy, Souvik</creatorcontrib><description>We study inversion of the spherical Radon transform with centers on a sphere (the data acquisition set). Such inversions are essential in various image reconstruction problems arising in medical, radar and sonar imaging. In the case of radially incomplete data, we show that the spherical Radon transform can be uniquely inverted recovering the image function in spherical shells. Our result is valid when the support of the image function is inside the data acquisition sphere, outside that sphere, as well as on both sides of the sphere. Furthermore, in addition to the uniqueness result our method of proof provides reconstruction formulas for all those cases. We present a robust computational algorithm based on our inversion formula and demonstrate its accuracy and efficiency on several numerical examples.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1702.04784</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Image acquisition ; Image reconstruction ; Inversions ; Radar imaging ; Radon transformation ; Robustness (mathematics) ; Spherical shells</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076413209?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ambartsoumian, Gaik</creatorcontrib><creatorcontrib>Rim Gouia-Zarrad</creatorcontrib><creatorcontrib>Krishnan, Venkateswaran P</creatorcontrib><creatorcontrib>Roy, Souvik</creatorcontrib><title>Image reconstruction from radially incomplete spherical Radon data</title><title>arXiv.org</title><description>We study inversion of the spherical Radon transform with centers on a sphere (the data acquisition set). Such inversions are essential in various image reconstruction problems arising in medical, radar and sonar imaging. In the case of radially incomplete data, we show that the spherical Radon transform can be uniquely inverted recovering the image function in spherical shells. Our result is valid when the support of the image function is inside the data acquisition sphere, outside that sphere, as well as on both sides of the sphere. Furthermore, in addition to the uniqueness result our method of proof provides reconstruction formulas for all those cases. We present a robust computational algorithm based on our inversion formula and demonstrate its accuracy and efficiency on several numerical examples.</description><subject>Algorithms</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Inversions</subject><subject>Radar imaging</subject><subject>Radon transformation</subject><subject>Robustness (mathematics)</subject><subject>Spherical shells</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0tLxDAUhYMgOIzzA9wFXLfe3iRNs9TBx8CAILMfbvPQDm0zJq3ov7egq7M5nO87jN1UUMpGKbij9N19lZUGLEHqRl6wFQpRFY1EvGKbnE8AgLVGpcSKPewGevc8eRvHPKXZTl0ceUhx4IlcR33_w7vRxuHc-8nzfP7wqbPU8zdyS9HRRNfsMlCf_eY_1-zw9HjYvhT71-fd9n5fkEJTUBCutihRtSEAStDakVSLmQjkBVgtTdsgqcXTONNSVUnlwQkDsl2OiTW7_Zs9p_g5-zwdT3FO40I8IuhaVgLBiF9dA0s-</recordid><startdate>20170922</startdate><enddate>20170922</enddate><creator>Ambartsoumian, Gaik</creator><creator>Rim Gouia-Zarrad</creator><creator>Krishnan, Venkateswaran P</creator><creator>Roy, Souvik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170922</creationdate><title>Image reconstruction from radially incomplete spherical Radon data</title><author>Ambartsoumian, Gaik ; Rim Gouia-Zarrad ; Krishnan, Venkateswaran P ; Roy, Souvik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-af3d6c2425bff024077da453313fae30c749b82a58429d9ba1145e0d3904b8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Inversions</topic><topic>Radar imaging</topic><topic>Radon transformation</topic><topic>Robustness (mathematics)</topic><topic>Spherical shells</topic><toplevel>online_resources</toplevel><creatorcontrib>Ambartsoumian, Gaik</creatorcontrib><creatorcontrib>Rim Gouia-Zarrad</creatorcontrib><creatorcontrib>Krishnan, Venkateswaran P</creatorcontrib><creatorcontrib>Roy, Souvik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambartsoumian, Gaik</au><au>Rim Gouia-Zarrad</au><au>Krishnan, Venkateswaran P</au><au>Roy, Souvik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image reconstruction from radially incomplete spherical Radon data</atitle><jtitle>arXiv.org</jtitle><date>2017-09-22</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We study inversion of the spherical Radon transform with centers on a sphere (the data acquisition set). Such inversions are essential in various image reconstruction problems arising in medical, radar and sonar imaging. In the case of radially incomplete data, we show that the spherical Radon transform can be uniquely inverted recovering the image function in spherical shells. Our result is valid when the support of the image function is inside the data acquisition sphere, outside that sphere, as well as on both sides of the sphere. Furthermore, in addition to the uniqueness result our method of proof provides reconstruction formulas for all those cases. We present a robust computational algorithm based on our inversion formula and demonstrate its accuracy and efficiency on several numerical examples.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1702.04784</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076413209 |
source | ProQuest - Publicly Available Content Database |
subjects | Algorithms Image acquisition Image reconstruction Inversions Radar imaging Radon transformation Robustness (mathematics) Spherical shells |
title | Image reconstruction from radially incomplete spherical Radon data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20reconstruction%20from%20radially%20incomplete%20spherical%20Radon%20data&rft.jtitle=arXiv.org&rft.au=Ambartsoumian,%20Gaik&rft.date=2017-09-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1702.04784&rft_dat=%3Cproquest%3E2076413209%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-af3d6c2425bff024077da453313fae30c749b82a58429d9ba1145e0d3904b8553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076413209&rft_id=info:pmid/&rfr_iscdi=true |