Loading…
The Mathematical Intelligencer flunks the Olympics
The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev's claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framewo...
Saved in:
Published in: | arXiv.org 2016-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gutman, Alexander E Katz, Mikhail G Kudryk, Taras S Kutateladze, Semen S |
description | The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev's claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev's grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who published an article on a grossone, places it squarely outside the historical panorama of ideas dealing with infinity and infinitesimals. |
doi_str_mv | 10.48550/arxiv.1606.00160 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076494201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076494201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-1c5c1d41c049ef9d8bf235ab513f7155d0022141be5ef8049c92172c2821e3293</originalsourceid><addsrcrecordid>eNotjktLw0AUhQdBsNT-AHcB14n33pmbx1KKj0Klm-zLZHLHpk7TmklE_70BXX2Lc_jOUeoOITMlMzzY4bv7yjCHPAOYcaUWpDWmpSG6UasYjwBAeUHMeqGoPkjyZseDnOzYORuSTT9KCN279E6GxIep_4jJnCe78HO6dC7eqmtvQ5TVP5eqfn6q16_pdveyWT9uU8uEKTp22Bp0YCrxVVs2njTbhlH7Apnb-QShwUZYfDmXXEVYkKOSUDRVeqnu_7SX4fw5SRz3x_M09PPinqDITWUIUP8CiOFElg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076494201</pqid></control><display><type>article</type><title>The Mathematical Intelligencer flunks the Olympics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gutman, Alexander E ; Katz, Mikhail G ; Kudryk, Taras S ; Kutateladze, Semen S</creator><creatorcontrib>Gutman, Alexander E ; Katz, Mikhail G ; Kudryk, Taras S ; Kutateladze, Semen S</creatorcontrib><description>The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev's claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev's grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who published an article on a grossone, places it squarely outside the historical panorama of ideas dealing with infinity and infinitesimals.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1606.00160</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Infinity ; Intelligence ; Mathematical analysis ; Subsystems</subject><ispartof>arXiv.org, 2016-06</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076494201?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gutman, Alexander E</creatorcontrib><creatorcontrib>Katz, Mikhail G</creatorcontrib><creatorcontrib>Kudryk, Taras S</creatorcontrib><creatorcontrib>Kutateladze, Semen S</creatorcontrib><title>The Mathematical Intelligencer flunks the Olympics</title><title>arXiv.org</title><description>The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev's claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev's grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who published an article on a grossone, places it squarely outside the historical panorama of ideas dealing with infinity and infinitesimals.</description><subject>Infinity</subject><subject>Intelligence</subject><subject>Mathematical analysis</subject><subject>Subsystems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLw0AUhQdBsNT-AHcB14n33pmbx1KKj0Klm-zLZHLHpk7TmklE_70BXX2Lc_jOUeoOITMlMzzY4bv7yjCHPAOYcaUWpDWmpSG6UasYjwBAeUHMeqGoPkjyZseDnOzYORuSTT9KCN279E6GxIep_4jJnCe78HO6dC7eqmtvQ5TVP5eqfn6q16_pdveyWT9uU8uEKTp22Bp0YCrxVVs2njTbhlH7Apnb-QShwUZYfDmXXEVYkKOSUDRVeqnu_7SX4fw5SRz3x_M09PPinqDITWUIUP8CiOFElg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Gutman, Alexander E</creator><creator>Katz, Mikhail G</creator><creator>Kudryk, Taras S</creator><creator>Kutateladze, Semen S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160601</creationdate><title>The Mathematical Intelligencer flunks the Olympics</title><author>Gutman, Alexander E ; Katz, Mikhail G ; Kudryk, Taras S ; Kutateladze, Semen S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-1c5c1d41c049ef9d8bf235ab513f7155d0022141be5ef8049c92172c2821e3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Infinity</topic><topic>Intelligence</topic><topic>Mathematical analysis</topic><topic>Subsystems</topic><toplevel>online_resources</toplevel><creatorcontrib>Gutman, Alexander E</creatorcontrib><creatorcontrib>Katz, Mikhail G</creatorcontrib><creatorcontrib>Kudryk, Taras S</creatorcontrib><creatorcontrib>Kutateladze, Semen S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutman, Alexander E</au><au>Katz, Mikhail G</au><au>Kudryk, Taras S</au><au>Kutateladze, Semen S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mathematical Intelligencer flunks the Olympics</atitle><jtitle>arXiv.org</jtitle><date>2016-06-01</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev's claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev's grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who published an article on a grossone, places it squarely outside the historical panorama of ideas dealing with infinity and infinitesimals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1606.00160</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076494201 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Infinity Intelligence Mathematical analysis Subsystems |
title | The Mathematical Intelligencer flunks the Olympics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mathematical%20Intelligencer%20flunks%20the%20Olympics&rft.jtitle=arXiv.org&rft.au=Gutman,%20Alexander%20E&rft.date=2016-06-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1606.00160&rft_dat=%3Cproquest%3E2076494201%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-1c5c1d41c049ef9d8bf235ab513f7155d0022141be5ef8049c92172c2821e3293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076494201&rft_id=info:pmid/&rfr_iscdi=true |