Loading…
Collaborative filtering with maximum entropy
As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to au...
Saved in:
Published in: | IEEE intelligent systems 2004-11, Vol.19 (6), p.40-47 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3 |
container_end_page | 47 |
container_issue | 6 |
container_start_page | 40 |
container_title | IEEE intelligent systems |
container_volume | 19 |
creator | Pavlov, D. Manavoglu, E. Giles, C.L. Pennock, D.M. |
description | As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects. |
doi_str_mv | 10.1109/MIS.2004.59 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_207649762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1363733</ieee_id><sourcerecordid>901651885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</originalsourceid><addsrcrecordid>eNp90LtPwzAQBnALgUQpTIwsEQMM0OLzMzeiikelIgZgthzXgVR5FDsB-t-TKkhIDEz3DT-d7j5CjoFOAShePcyfpoxSMZW4Q0aAAibAUOz2WW6z0myfHMS4opRxCumIXM6asrRZE2xbfPgkL8rWh6J-TT6L9i2p7FdRdVXi6zY0680h2cttGf3RzxyTl9ub59n9ZPF4N59dLyaOp7SdaC3QW5cvWaYdIkWPSiIDzhxQoT1zSJljGTibAwfqQC09CC5zgVZCxsfkfNi7Ds1752NrqiI63x9a-6aLBikoCWkqe3n2r2SpQq0V6-HpH7hqulD3XxhGtRI4oIsBudDEGHxu1qGobNgYoGZbsOkLNtuCjcRenwy68N7_Sq645px_A-_jdF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207649762</pqid></control><display><type>article</type><title>Collaborative filtering with maximum entropy</title><source>Library & Information Science Abstracts (LISA)</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Pavlov, D. ; Manavoglu, E. ; Giles, C.L. ; Pennock, D.M.</creator><creatorcontrib>Pavlov, D. ; Manavoglu, E. ; Giles, C.L. ; Pennock, D.M.</creatorcontrib><description>As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2004.59</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; Bayesian methods ; Collaboration ; Collaborative work ; Collection ; Communities ; Computer science ; Context modeling ; Dynamical systems ; Dynamics ; Entropy ; Filtering ; History ; Maximum entropy ; maximum entropy model ; mixture models ; Navigation ; On-line systems ; Online ; recommender systems ; Search engines ; sequence modeling</subject><ispartof>IEEE intelligent systems, 2004-11, Vol.19 (6), p.40-47</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</citedby><cites>FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1363733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,34116,54777</link.rule.ids></links><search><creatorcontrib>Pavlov, D.</creatorcontrib><creatorcontrib>Manavoglu, E.</creatorcontrib><creatorcontrib>Giles, C.L.</creatorcontrib><creatorcontrib>Pennock, D.M.</creatorcontrib><title>Collaborative filtering with maximum entropy</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects.</description><subject>Algorithms</subject><subject>Bayesian methods</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Collection</subject><subject>Communities</subject><subject>Computer science</subject><subject>Context modeling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Filtering</subject><subject>History</subject><subject>Maximum entropy</subject><subject>maximum entropy model</subject><subject>mixture models</subject><subject>Navigation</subject><subject>On-line systems</subject><subject>Online</subject><subject>recommender systems</subject><subject>Search engines</subject><subject>sequence modeling</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp90LtPwzAQBnALgUQpTIwsEQMM0OLzMzeiikelIgZgthzXgVR5FDsB-t-TKkhIDEz3DT-d7j5CjoFOAShePcyfpoxSMZW4Q0aAAibAUOz2WW6z0myfHMS4opRxCumIXM6asrRZE2xbfPgkL8rWh6J-TT6L9i2p7FdRdVXi6zY0680h2cttGf3RzxyTl9ub59n9ZPF4N59dLyaOp7SdaC3QW5cvWaYdIkWPSiIDzhxQoT1zSJljGTibAwfqQC09CC5zgVZCxsfkfNi7Ds1752NrqiI63x9a-6aLBikoCWkqe3n2r2SpQq0V6-HpH7hqulD3XxhGtRI4oIsBudDEGHxu1qGobNgYoGZbsOkLNtuCjcRenwy68N7_Sq645px_A-_jdF0</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Pavlov, D.</creator><creator>Manavoglu, E.</creator><creator>Giles, C.L.</creator><creator>Pennock, D.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20041101</creationdate><title>Collaborative filtering with maximum entropy</title><author>Pavlov, D. ; Manavoglu, E. ; Giles, C.L. ; Pennock, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Bayesian methods</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Collection</topic><topic>Communities</topic><topic>Computer science</topic><topic>Context modeling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Filtering</topic><topic>History</topic><topic>Maximum entropy</topic><topic>maximum entropy model</topic><topic>mixture models</topic><topic>Navigation</topic><topic>On-line systems</topic><topic>Online</topic><topic>recommender systems</topic><topic>Search engines</topic><topic>sequence modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, D.</creatorcontrib><creatorcontrib>Manavoglu, E.</creatorcontrib><creatorcontrib>Giles, C.L.</creatorcontrib><creatorcontrib>Pennock, D.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, D.</au><au>Manavoglu, E.</au><au>Giles, C.L.</au><au>Pennock, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative filtering with maximum entropy</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2004-11-01</date><risdate>2004</risdate><volume>19</volume><issue>6</issue><spage>40</spage><epage>47</epage><pages>40-47</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2004.59</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2004-11, Vol.19 (6), p.40-47 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_proquest_journals_207649762 |
source | Library & Information Science Abstracts (LISA); IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Bayesian methods Collaboration Collaborative work Collection Communities Computer science Context modeling Dynamical systems Dynamics Entropy Filtering History Maximum entropy maximum entropy model mixture models Navigation On-line systems Online recommender systems Search engines sequence modeling |
title | Collaborative filtering with maximum entropy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20filtering%20with%20maximum%20entropy&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Pavlov,%20D.&rft.date=2004-11-01&rft.volume=19&rft.issue=6&rft.spage=40&rft.epage=47&rft.pages=40-47&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2004.59&rft_dat=%3Cproquest_ieee_%3E901651885%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207649762&rft_id=info:pmid/&rft_ieee_id=1363733&rfr_iscdi=true |