Loading…

Collaborative filtering with maximum entropy

As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to au...

Full description

Saved in:
Bibliographic Details
Published in:IEEE intelligent systems 2004-11, Vol.19 (6), p.40-47
Main Authors: Pavlov, D., Manavoglu, E., Giles, C.L., Pennock, D.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3
cites cdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3
container_end_page 47
container_issue 6
container_start_page 40
container_title IEEE intelligent systems
container_volume 19
creator Pavlov, D.
Manavoglu, E.
Giles, C.L.
Pennock, D.M.
description As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects.
doi_str_mv 10.1109/MIS.2004.59
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_207649762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1363733</ieee_id><sourcerecordid>901651885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</originalsourceid><addsrcrecordid>eNp90LtPwzAQBnALgUQpTIwsEQMM0OLzMzeiikelIgZgthzXgVR5FDsB-t-TKkhIDEz3DT-d7j5CjoFOAShePcyfpoxSMZW4Q0aAAibAUOz2WW6z0myfHMS4opRxCumIXM6asrRZE2xbfPgkL8rWh6J-TT6L9i2p7FdRdVXi6zY0680h2cttGf3RzxyTl9ub59n9ZPF4N59dLyaOp7SdaC3QW5cvWaYdIkWPSiIDzhxQoT1zSJljGTibAwfqQC09CC5zgVZCxsfkfNi7Ds1752NrqiI63x9a-6aLBikoCWkqe3n2r2SpQq0V6-HpH7hqulD3XxhGtRI4oIsBudDEGHxu1qGobNgYoGZbsOkLNtuCjcRenwy68N7_Sq645px_A-_jdF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207649762</pqid></control><display><type>article</type><title>Collaborative filtering with maximum entropy</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Pavlov, D. ; Manavoglu, E. ; Giles, C.L. ; Pennock, D.M.</creator><creatorcontrib>Pavlov, D. ; Manavoglu, E. ; Giles, C.L. ; Pennock, D.M.</creatorcontrib><description>As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2004.59</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; Bayesian methods ; Collaboration ; Collaborative work ; Collection ; Communities ; Computer science ; Context modeling ; Dynamical systems ; Dynamics ; Entropy ; Filtering ; History ; Maximum entropy ; maximum entropy model ; mixture models ; Navigation ; On-line systems ; Online ; recommender systems ; Search engines ; sequence modeling</subject><ispartof>IEEE intelligent systems, 2004-11, Vol.19 (6), p.40-47</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</citedby><cites>FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1363733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,34116,54777</link.rule.ids></links><search><creatorcontrib>Pavlov, D.</creatorcontrib><creatorcontrib>Manavoglu, E.</creatorcontrib><creatorcontrib>Giles, C.L.</creatorcontrib><creatorcontrib>Pennock, D.M.</creatorcontrib><title>Collaborative filtering with maximum entropy</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects.</description><subject>Algorithms</subject><subject>Bayesian methods</subject><subject>Collaboration</subject><subject>Collaborative work</subject><subject>Collection</subject><subject>Communities</subject><subject>Computer science</subject><subject>Context modeling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Entropy</subject><subject>Filtering</subject><subject>History</subject><subject>Maximum entropy</subject><subject>maximum entropy model</subject><subject>mixture models</subject><subject>Navigation</subject><subject>On-line systems</subject><subject>Online</subject><subject>recommender systems</subject><subject>Search engines</subject><subject>sequence modeling</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp90LtPwzAQBnALgUQpTIwsEQMM0OLzMzeiikelIgZgthzXgVR5FDsB-t-TKkhIDEz3DT-d7j5CjoFOAShePcyfpoxSMZW4Q0aAAibAUOz2WW6z0myfHMS4opRxCumIXM6asrRZE2xbfPgkL8rWh6J-TT6L9i2p7FdRdVXi6zY0680h2cttGf3RzxyTl9ub59n9ZPF4N59dLyaOp7SdaC3QW5cvWaYdIkWPSiIDzhxQoT1zSJljGTibAwfqQC09CC5zgVZCxsfkfNi7Ds1752NrqiI63x9a-6aLBikoCWkqe3n2r2SpQq0V6-HpH7hqulD3XxhGtRI4oIsBudDEGHxu1qGobNgYoGZbsOkLNtuCjcRenwy68N7_Sq645px_A-_jdF0</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Pavlov, D.</creator><creator>Manavoglu, E.</creator><creator>Giles, C.L.</creator><creator>Pennock, D.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20041101</creationdate><title>Collaborative filtering with maximum entropy</title><author>Pavlov, D. ; Manavoglu, E. ; Giles, C.L. ; Pennock, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Bayesian methods</topic><topic>Collaboration</topic><topic>Collaborative work</topic><topic>Collection</topic><topic>Communities</topic><topic>Computer science</topic><topic>Context modeling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Entropy</topic><topic>Filtering</topic><topic>History</topic><topic>Maximum entropy</topic><topic>maximum entropy model</topic><topic>mixture models</topic><topic>Navigation</topic><topic>On-line systems</topic><topic>Online</topic><topic>recommender systems</topic><topic>Search engines</topic><topic>sequence modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, D.</creatorcontrib><creatorcontrib>Manavoglu, E.</creatorcontrib><creatorcontrib>Giles, C.L.</creatorcontrib><creatorcontrib>Pennock, D.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, D.</au><au>Manavoglu, E.</au><au>Giles, C.L.</au><au>Pennock, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative filtering with maximum entropy</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2004-11-01</date><risdate>2004</risdate><volume>19</volume><issue>6</issue><spage>40</spage><epage>47</epage><pages>40-47</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>As users navigate through online document collections on high-volume Web servers, they depend on good recommendations. We present a novel maximum-entropy algorithm for generating accurate recommendations and a data-clustering approach for speeding up model training. Recommender systems attempt to automate the process of "word of mouth" recommendations within a community. Typical application environments such as online shops and search engines have many dynamic aspects.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2004.59</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2004-11, Vol.19 (6), p.40-47
issn 1541-1672
1941-1294
language eng
recordid cdi_proquest_journals_207649762
source Library & Information Science Abstracts (LISA); IEEE Electronic Library (IEL) Journals
subjects Algorithms
Bayesian methods
Collaboration
Collaborative work
Collection
Communities
Computer science
Context modeling
Dynamical systems
Dynamics
Entropy
Filtering
History
Maximum entropy
maximum entropy model
mixture models
Navigation
On-line systems
Online
recommender systems
Search engines
sequence modeling
title Collaborative filtering with maximum entropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20filtering%20with%20maximum%20entropy&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Pavlov,%20D.&rft.date=2004-11-01&rft.volume=19&rft.issue=6&rft.spage=40&rft.epage=47&rft.pages=40-47&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2004.59&rft_dat=%3Cproquest_ieee_%3E901651885%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-7749eacfd2b7c9909e96592132c1047e2c902c2b1caf1310c16de1435f49a51b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207649762&rft_id=info:pmid/&rft_ieee_id=1363733&rfr_iscdi=true