Loading…

Existence of positive solutions to a nonlinear elliptic system with nonlinearity involving gradient term

In this work we analyze the existence of solutions to the nonlinear elliptic system: \begin{equation*} \left\{ \begin{array}{rcll} -\Delta u & = & v^q+\a g & \text{in }\Omega , \\ -\Delta v& = &|\nabla u|^{p}+\l f &\text{in }\Omega , \\ u=v&=& 0 & \text{on }\parti...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-09
Main Authors: Abdellaoui, Boumediene, Attar, Ahmed, El-Haj Laamri
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Abdellaoui, Boumediene
Attar, Ahmed
El-Haj Laamri
description In this work we analyze the existence of solutions to the nonlinear elliptic system: \begin{equation*} \left\{ \begin{array}{rcll} -\Delta u & = & v^q+\a g & \text{in }\Omega , \\ -\Delta v& = &|\nabla u|^{p}+\l f &\text{in }\Omega , \\ u=v&=& 0 & \text{on }\partial \Omega ,\\ u,v& \geq & 0 & \text{in }\Omega, \end{array}% \right. \end{equation*} where \(\Omega\) is a bounded domain of \(\ren\) and \(p\ge 1\), \(q>0\) with \(pq>1\). \(f,g\) are nonnegative measurable functions with additional hypotheses and \(\a, \l\ge 0\). As a consequence we show that the fourth order problem \begin{equation*} \left\{ \begin{array}{rcll} \Delta^2 u & = &|\nabla u|^{p}+\tildeł \tilde{f} &\text{in }\Omega , \\ u=\D u&=& 0 & \text{on }\partial \Omega ,\\ \end{array}% \right. \end{equation*} has a solution for all \(p>1\), under suitable conditions on \(\tilde{f}\) and \(\tildeł\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076629990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076629990</sourcerecordid><originalsourceid>FETCH-proquest_journals_20766299903</originalsourceid><addsrcrecordid>eNqNi8EOwUAQQDcSCcE_TOIsWVstPQvxAe7SMJhmzdTOtPh7DhJXp3d47_XcMGTZfLZahDBwE9Xaex-KZcjzbOiumyepIR8R5AyNKBl1CCqxNRJWMIEKWDgSY5UAY6TG6Aj6-mw3eJBdf5rsBcSdxI74ApdUnQjZwDDdxq5_rqLi5MuRm243-_Vu1iS5t6h2qKVN_FGH4JdFEcqy9Nl_1Rs70kmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076629990</pqid></control><display><type>article</type><title>Existence of positive solutions to a nonlinear elliptic system with nonlinearity involving gradient term</title><source>Publicly Available Content Database</source><creator>Abdellaoui, Boumediene ; Attar, Ahmed ; El-Haj Laamri</creator><creatorcontrib>Abdellaoui, Boumediene ; Attar, Ahmed ; El-Haj Laamri</creatorcontrib><description><![CDATA[In this work we analyze the existence of solutions to the nonlinear elliptic system: \begin{equation*} \left\{ \begin{array}{rcll} -\Delta u & = & v^q+\a g & \text{in }\Omega , \\ -\Delta v& = &|\nabla u|^{p}+\l f &\text{in }\Omega , \\ u=v&=& 0 & \text{on }\partial \Omega ,\\ u,v& \geq & 0 & \text{in }\Omega, \end{array}% \right. \end{equation*} where \(\Omega\) is a bounded domain of \(\ren\) and \(p\ge 1\), \(q>0\) with \(pq>1\). \(f,g\) are nonnegative measurable functions with additional hypotheses and \(\a, \l\ge 0\). As a consequence we show that the fourth order problem \begin{equation*} \left\{ \begin{array}{rcll} \Delta^2 u & = &|\nabla u|^{p}+\tildeł \tilde{f} &\text{in }\Omega , \\ u=\D u&=& 0 & \text{on }\partial \Omega ,\\ \end{array}% \right. \end{equation*} has a solution for all \(p>1\), under suitable conditions on \(\tilde{f}\) and \(\tildeł\).]]></description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Nonlinearity</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076629990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Abdellaoui, Boumediene</creatorcontrib><creatorcontrib>Attar, Ahmed</creatorcontrib><creatorcontrib>El-Haj Laamri</creatorcontrib><title>Existence of positive solutions to a nonlinear elliptic system with nonlinearity involving gradient term</title><title>arXiv.org</title><description><![CDATA[In this work we analyze the existence of solutions to the nonlinear elliptic system: \begin{equation*} \left\{ \begin{array}{rcll} -\Delta u & = & v^q+\a g & \text{in }\Omega , \\ -\Delta v& = &|\nabla u|^{p}+\l f &\text{in }\Omega , \\ u=v&=& 0 & \text{on }\partial \Omega ,\\ u,v& \geq & 0 & \text{in }\Omega, \end{array}% \right. \end{equation*} where \(\Omega\) is a bounded domain of \(\ren\) and \(p\ge 1\), \(q>0\) with \(pq>1\). \(f,g\) are nonnegative measurable functions with additional hypotheses and \(\a, \l\ge 0\). As a consequence we show that the fourth order problem \begin{equation*} \left\{ \begin{array}{rcll} \Delta^2 u & = &|\nabla u|^{p}+\tildeł \tilde{f} &\text{in }\Omega , \\ u=\D u&=& 0 & \text{on }\partial \Omega ,\\ \end{array}% \right. \end{equation*} has a solution for all \(p>1\), under suitable conditions on \(\tilde{f}\) and \(\tildeł\).]]></description><subject>Arrays</subject><subject>Nonlinearity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8EOwUAQQDcSCcE_TOIsWVstPQvxAe7SMJhmzdTOtPh7DhJXp3d47_XcMGTZfLZahDBwE9Xaex-KZcjzbOiumyepIR8R5AyNKBl1CCqxNRJWMIEKWDgSY5UAY6TG6Aj6-mw3eJBdf5rsBcSdxI74ApdUnQjZwDDdxq5_rqLi5MuRm243-_Vu1iS5t6h2qKVN_FGH4JdFEcqy9Nl_1Rs70kmQ</recordid><startdate>20170910</startdate><enddate>20170910</enddate><creator>Abdellaoui, Boumediene</creator><creator>Attar, Ahmed</creator><creator>El-Haj Laamri</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170910</creationdate><title>Existence of positive solutions to a nonlinear elliptic system with nonlinearity involving gradient term</title><author>Abdellaoui, Boumediene ; Attar, Ahmed ; El-Haj Laamri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20766299903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arrays</topic><topic>Nonlinearity</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdellaoui, Boumediene</creatorcontrib><creatorcontrib>Attar, Ahmed</creatorcontrib><creatorcontrib>El-Haj Laamri</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdellaoui, Boumediene</au><au>Attar, Ahmed</au><au>El-Haj Laamri</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Existence of positive solutions to a nonlinear elliptic system with nonlinearity involving gradient term</atitle><jtitle>arXiv.org</jtitle><date>2017-09-10</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract><![CDATA[In this work we analyze the existence of solutions to the nonlinear elliptic system: \begin{equation*} \left\{ \begin{array}{rcll} -\Delta u & = & v^q+\a g & \text{in }\Omega , \\ -\Delta v& = &|\nabla u|^{p}+\l f &\text{in }\Omega , \\ u=v&=& 0 & \text{on }\partial \Omega ,\\ u,v& \geq & 0 & \text{in }\Omega, \end{array}% \right. \end{equation*} where \(\Omega\) is a bounded domain of \(\ren\) and \(p\ge 1\), \(q>0\) with \(pq>1\). \(f,g\) are nonnegative measurable functions with additional hypotheses and \(\a, \l\ge 0\). As a consequence we show that the fourth order problem \begin{equation*} \left\{ \begin{array}{rcll} \Delta^2 u & = &|\nabla u|^{p}+\tildeł \tilde{f} &\text{in }\Omega , \\ u=\D u&=& 0 & \text{on }\partial \Omega ,\\ \end{array}% \right. \end{equation*} has a solution for all \(p>1\), under suitable conditions on \(\tilde{f}\) and \(\tildeł\).]]></abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076629990
source Publicly Available Content Database
subjects Arrays
Nonlinearity
title Existence of positive solutions to a nonlinear elliptic system with nonlinearity involving gradient term
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Existence%20of%20positive%20solutions%20to%20a%20nonlinear%20elliptic%20system%20with%20nonlinearity%20involving%20gradient%20term&rft.jtitle=arXiv.org&rft.au=Abdellaoui,%20Boumediene&rft.date=2017-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076629990%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20766299903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076629990&rft_id=info:pmid/&rfr_iscdi=true