Loading…
Blood-based metabolic signatures in Alzheimer's disease
Introduction: Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. Methods: We included 127 AD patients and 121 controls with CSF-biomarker-confirmed diagnosis (cut-off tau/A\(\beta_{42}\): 0.52). Mass spectrometry platforms determined the concentrations...
Saved in:
Published in: | arXiv.org 2017-09 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | de Leeuw, Francisca A Peeters, Carel F W Kester, Maartje I Harms, Amy C Struys, Eduard A Hankemeier, Thomas Herman W T van Vlijmen Sven J van der Lee van Duijn, Cornelia M Scheltens, Philip Demirkan, Ayşe Mark A van de Wiel Wiesje M van der Flier Teunissen, Charlotte E |
description | Introduction: Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. Methods: We included 127 AD patients and 121 controls with CSF-biomarker-confirmed diagnosis (cut-off tau/A\(\beta_{42}\): 0.52). Mass spectrometry platforms determined the concentrations of 53 amine, 22 organic acid, 120 lipid, and 40 oxidative stress compounds. Multiple signatures were assessed: differential expression (nested linear models), classification (logistic regression), and regulatory (network extraction). Results: Twenty-six metabolites were differentially expressed. Metabolites improved the classification performance of clinical variables from 74% to 79%. Network models identified 5 hubs of metabolic dysregulation: Tyrosine, glycylglycine, glutamine, lysophosphatic acid C18:2 and platelet activating factor C16:0. The metabolite network for APOE \(\epsilon\)4 negative AD patients was less cohesive compared to the network for APOE \(\epsilon\)4 positive AD patients. Discussion: Multiple signatures point to various promising peripheral markers for further validation. The network differences in AD patients according to APOE genotype may reflect different pathways to AD. |
doi_str_mv | 10.48550/arxiv.1709.07285 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076642818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076642818</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-706d9c7d8f7f357142848c657669994e07fe7e1874005a146efc13c0e46b2ba83</originalsourceid><addsrcrecordid>eNotzU1Lw0AUheFBECy1P8DdgAtXiXc-72RZi1qh4Kb7MknutFPSRGcSEX-9AV2dzctzGLsTUGpnDDz69B2_SoFQlYDSmSu2kEqJwmkpb9gq5zMASIvSGLVg-NQNQ1vUPlPLLzT6euhiw3M89n6cEmUee77ufk4UL5QeMm9jpjm-ZdfBd5lW_7tk-5fn_WZb7N5f3zbrXeGNdAWCbasGWxcwKINCS6ddYw1aW1WVJsBASMKhBjBeaEuhEaoB0raWtXdqye7_2I80fE6Ux8N5mFI_Px4kzMoMCqd-AQ37RnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076642818</pqid></control><display><type>article</type><title>Blood-based metabolic signatures in Alzheimer's disease</title><source>Publicly Available Content Database</source><creator>de Leeuw, Francisca A ; Peeters, Carel F W ; Kester, Maartje I ; Harms, Amy C ; Struys, Eduard A ; Hankemeier, Thomas ; Herman W T van Vlijmen ; Sven J van der Lee ; van Duijn, Cornelia M ; Scheltens, Philip ; Demirkan, Ayşe ; Mark A van de Wiel ; Wiesje M van der Flier ; Teunissen, Charlotte E</creator><creatorcontrib>de Leeuw, Francisca A ; Peeters, Carel F W ; Kester, Maartje I ; Harms, Amy C ; Struys, Eduard A ; Hankemeier, Thomas ; Herman W T van Vlijmen ; Sven J van der Lee ; van Duijn, Cornelia M ; Scheltens, Philip ; Demirkan, Ayşe ; Mark A van de Wiel ; Wiesje M van der Flier ; Teunissen, Charlotte E</creatorcontrib><description>Introduction: Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. Methods: We included 127 AD patients and 121 controls with CSF-biomarker-confirmed diagnosis (cut-off tau/A\(\beta_{42}\): 0.52). Mass spectrometry platforms determined the concentrations of 53 amine, 22 organic acid, 120 lipid, and 40 oxidative stress compounds. Multiple signatures were assessed: differential expression (nested linear models), classification (logistic regression), and regulatory (network extraction). Results: Twenty-six metabolites were differentially expressed. Metabolites improved the classification performance of clinical variables from 74% to 79%. Network models identified 5 hubs of metabolic dysregulation: Tyrosine, glycylglycine, glutamine, lysophosphatic acid C18:2 and platelet activating factor C16:0. The metabolite network for APOE \(\epsilon\)4 negative AD patients was less cohesive compared to the network for APOE \(\epsilon\)4 positive AD patients. Discussion: Multiple signatures point to various promising peripheral markers for further validation. The network differences in AD patients according to APOE genotype may reflect different pathways to AD.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1709.07285</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alzheimer's disease ; Biomarkers ; Blood ; Classification ; Glutamine ; Lipids ; Mass spectrometry ; Metabolism ; Metabolites ; Patients ; Tyrosine</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076642818?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>de Leeuw, Francisca A</creatorcontrib><creatorcontrib>Peeters, Carel F W</creatorcontrib><creatorcontrib>Kester, Maartje I</creatorcontrib><creatorcontrib>Harms, Amy C</creatorcontrib><creatorcontrib>Struys, Eduard A</creatorcontrib><creatorcontrib>Hankemeier, Thomas</creatorcontrib><creatorcontrib>Herman W T van Vlijmen</creatorcontrib><creatorcontrib>Sven J van der Lee</creatorcontrib><creatorcontrib>van Duijn, Cornelia M</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Demirkan, Ayşe</creatorcontrib><creatorcontrib>Mark A van de Wiel</creatorcontrib><creatorcontrib>Wiesje M van der Flier</creatorcontrib><creatorcontrib>Teunissen, Charlotte E</creatorcontrib><title>Blood-based metabolic signatures in Alzheimer's disease</title><title>arXiv.org</title><description>Introduction: Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. Methods: We included 127 AD patients and 121 controls with CSF-biomarker-confirmed diagnosis (cut-off tau/A\(\beta_{42}\): 0.52). Mass spectrometry platforms determined the concentrations of 53 amine, 22 organic acid, 120 lipid, and 40 oxidative stress compounds. Multiple signatures were assessed: differential expression (nested linear models), classification (logistic regression), and regulatory (network extraction). Results: Twenty-six metabolites were differentially expressed. Metabolites improved the classification performance of clinical variables from 74% to 79%. Network models identified 5 hubs of metabolic dysregulation: Tyrosine, glycylglycine, glutamine, lysophosphatic acid C18:2 and platelet activating factor C16:0. The metabolite network for APOE \(\epsilon\)4 negative AD patients was less cohesive compared to the network for APOE \(\epsilon\)4 positive AD patients. Discussion: Multiple signatures point to various promising peripheral markers for further validation. The network differences in AD patients according to APOE genotype may reflect different pathways to AD.</description><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Classification</subject><subject>Glutamine</subject><subject>Lipids</subject><subject>Mass spectrometry</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Patients</subject><subject>Tyrosine</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzU1Lw0AUheFBECy1P8DdgAtXiXc-72RZi1qh4Kb7MknutFPSRGcSEX-9AV2dzctzGLsTUGpnDDz69B2_SoFQlYDSmSu2kEqJwmkpb9gq5zMASIvSGLVg-NQNQ1vUPlPLLzT6euhiw3M89n6cEmUee77ufk4UL5QeMm9jpjm-ZdfBd5lW_7tk-5fn_WZb7N5f3zbrXeGNdAWCbasGWxcwKINCS6ddYw1aW1WVJsBASMKhBjBeaEuhEaoB0raWtXdqye7_2I80fE6Ux8N5mFI_Px4kzMoMCqd-AQ37RnI</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>de Leeuw, Francisca A</creator><creator>Peeters, Carel F W</creator><creator>Kester, Maartje I</creator><creator>Harms, Amy C</creator><creator>Struys, Eduard A</creator><creator>Hankemeier, Thomas</creator><creator>Herman W T van Vlijmen</creator><creator>Sven J van der Lee</creator><creator>van Duijn, Cornelia M</creator><creator>Scheltens, Philip</creator><creator>Demirkan, Ayşe</creator><creator>Mark A van de Wiel</creator><creator>Wiesje M van der Flier</creator><creator>Teunissen, Charlotte E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170921</creationdate><title>Blood-based metabolic signatures in Alzheimer's disease</title><author>de Leeuw, Francisca A ; Peeters, Carel F W ; Kester, Maartje I ; Harms, Amy C ; Struys, Eduard A ; Hankemeier, Thomas ; Herman W T van Vlijmen ; Sven J van der Lee ; van Duijn, Cornelia M ; Scheltens, Philip ; Demirkan, Ayşe ; Mark A van de Wiel ; Wiesje M van der Flier ; Teunissen, Charlotte E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-706d9c7d8f7f357142848c657669994e07fe7e1874005a146efc13c0e46b2ba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Classification</topic><topic>Glutamine</topic><topic>Lipids</topic><topic>Mass spectrometry</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Patients</topic><topic>Tyrosine</topic><toplevel>online_resources</toplevel><creatorcontrib>de Leeuw, Francisca A</creatorcontrib><creatorcontrib>Peeters, Carel F W</creatorcontrib><creatorcontrib>Kester, Maartje I</creatorcontrib><creatorcontrib>Harms, Amy C</creatorcontrib><creatorcontrib>Struys, Eduard A</creatorcontrib><creatorcontrib>Hankemeier, Thomas</creatorcontrib><creatorcontrib>Herman W T van Vlijmen</creatorcontrib><creatorcontrib>Sven J van der Lee</creatorcontrib><creatorcontrib>van Duijn, Cornelia M</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Demirkan, Ayşe</creatorcontrib><creatorcontrib>Mark A van de Wiel</creatorcontrib><creatorcontrib>Wiesje M van der Flier</creatorcontrib><creatorcontrib>Teunissen, Charlotte E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Leeuw, Francisca A</au><au>Peeters, Carel F W</au><au>Kester, Maartje I</au><au>Harms, Amy C</au><au>Struys, Eduard A</au><au>Hankemeier, Thomas</au><au>Herman W T van Vlijmen</au><au>Sven J van der Lee</au><au>van Duijn, Cornelia M</au><au>Scheltens, Philip</au><au>Demirkan, Ayşe</au><au>Mark A van de Wiel</au><au>Wiesje M van der Flier</au><au>Teunissen, Charlotte E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood-based metabolic signatures in Alzheimer's disease</atitle><jtitle>arXiv.org</jtitle><date>2017-09-21</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Introduction: Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. Methods: We included 127 AD patients and 121 controls with CSF-biomarker-confirmed diagnosis (cut-off tau/A\(\beta_{42}\): 0.52). Mass spectrometry platforms determined the concentrations of 53 amine, 22 organic acid, 120 lipid, and 40 oxidative stress compounds. Multiple signatures were assessed: differential expression (nested linear models), classification (logistic regression), and regulatory (network extraction). Results: Twenty-six metabolites were differentially expressed. Metabolites improved the classification performance of clinical variables from 74% to 79%. Network models identified 5 hubs of metabolic dysregulation: Tyrosine, glycylglycine, glutamine, lysophosphatic acid C18:2 and platelet activating factor C16:0. The metabolite network for APOE \(\epsilon\)4 negative AD patients was less cohesive compared to the network for APOE \(\epsilon\)4 positive AD patients. Discussion: Multiple signatures point to various promising peripheral markers for further validation. The network differences in AD patients according to APOE genotype may reflect different pathways to AD.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1709.07285</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076642818 |
source | Publicly Available Content Database |
subjects | Alzheimer's disease Biomarkers Blood Classification Glutamine Lipids Mass spectrometry Metabolism Metabolites Patients Tyrosine |
title | Blood-based metabolic signatures in Alzheimer's disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood-based%20metabolic%20signatures%20in%20Alzheimer's%20disease&rft.jtitle=arXiv.org&rft.au=de%20Leeuw,%20Francisca%20A&rft.date=2017-09-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1709.07285&rft_dat=%3Cproquest%3E2076642818%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-706d9c7d8f7f357142848c657669994e07fe7e1874005a146efc13c0e46b2ba83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076642818&rft_id=info:pmid/&rfr_iscdi=true |