Loading…

An Abstract Approach to Consequence Relations

We generalise the Blok-Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipul...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-03
Main Authors: Cintula, Petr, José Gil Férez, Moraschini, Tommaso, Paoli, Francesco
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cintula, Petr
José Gil Férez
Moraschini, Tommaso
Paoli, Francesco
description We generalise the Blok-Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic.
doi_str_mv 10.48550/arxiv.1710.00220
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076759429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076759429</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-10d4a8b2100d4fce10b78d788f0f7de2ab1f100bc44a9a78277fdf98adadb6693</originalsourceid><addsrcrecordid>eNotjk9rAyEUxKVQSEjzAXoTejZ9PnXV47L0HwQCJffwXJUkhN103ZR-_ArtaYbfwMww9ihho50x8EzTz-l7I20FAIhwx5aolBROIy7YupQzVN5YNEYtmWgH3oYyT9TPvL1ep5H6I59H3o1DSV-3NPSJf6YLzacKHth9pktJ639dsf3ry757F9vd20fXbgUZ9EJC1OQCSqgm90lCsC5a5zJkGxNSkLlmodeaPFmH1uaYvaNIMTSNVyv29Fdb79QLZT6cx9s01MUDgm2s8Rq9-gX5LUP3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076759429</pqid></control><display><type>article</type><title>An Abstract Approach to Consequence Relations</title><source>Publicly Available Content (ProQuest)</source><creator>Cintula, Petr ; José Gil Férez ; Moraschini, Tommaso ; Paoli, Francesco</creator><creatorcontrib>Cintula, Petr ; José Gil Férez ; Moraschini, Tommaso ; Paoli, Francesco</creatorcontrib><description>We generalise the Blok-Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1710.00220</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fuzzy logic ; Fuzzy sets ; Monoids ; Semantics</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076759429?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Cintula, Petr</creatorcontrib><creatorcontrib>José Gil Férez</creatorcontrib><creatorcontrib>Moraschini, Tommaso</creatorcontrib><creatorcontrib>Paoli, Francesco</creatorcontrib><title>An Abstract Approach to Consequence Relations</title><title>arXiv.org</title><description>We generalise the Blok-Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic.</description><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Monoids</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk9rAyEUxKVQSEjzAXoTejZ9PnXV47L0HwQCJffwXJUkhN103ZR-_ArtaYbfwMww9ihho50x8EzTz-l7I20FAIhwx5aolBROIy7YupQzVN5YNEYtmWgH3oYyT9TPvL1ep5H6I59H3o1DSV-3NPSJf6YLzacKHth9pktJ639dsf3ry757F9vd20fXbgUZ9EJC1OQCSqgm90lCsC5a5zJkGxNSkLlmodeaPFmH1uaYvaNIMTSNVyv29Fdb79QLZT6cx9s01MUDgm2s8Rq9-gX5LUP3</recordid><startdate>20190317</startdate><enddate>20190317</enddate><creator>Cintula, Petr</creator><creator>José Gil Férez</creator><creator>Moraschini, Tommaso</creator><creator>Paoli, Francesco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190317</creationdate><title>An Abstract Approach to Consequence Relations</title><author>Cintula, Petr ; José Gil Férez ; Moraschini, Tommaso ; Paoli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-10d4a8b2100d4fce10b78d788f0f7de2ab1f100bc44a9a78277fdf98adadb6693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Monoids</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Cintula, Petr</creatorcontrib><creatorcontrib>José Gil Férez</creatorcontrib><creatorcontrib>Moraschini, Tommaso</creatorcontrib><creatorcontrib>Paoli, Francesco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cintula, Petr</au><au>José Gil Férez</au><au>Moraschini, Tommaso</au><au>Paoli, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Abstract Approach to Consequence Relations</atitle><jtitle>arXiv.org</jtitle><date>2019-03-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We generalise the Blok-Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1710.00220</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076759429
source Publicly Available Content (ProQuest)
subjects Fuzzy logic
Fuzzy sets
Monoids
Semantics
title An Abstract Approach to Consequence Relations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Abstract%20Approach%20to%20Consequence%20Relations&rft.jtitle=arXiv.org&rft.au=Cintula,%20Petr&rft.date=2019-03-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1710.00220&rft_dat=%3Cproquest%3E2076759429%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-10d4a8b2100d4fce10b78d788f0f7de2ab1f100bc44a9a78277fdf98adadb6693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076759429&rft_id=info:pmid/&rfr_iscdi=true