Loading…
Do Convolutional Neural Networks Learn Class Hierarchy?
Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the clas...
Saved in:
Published in: | arXiv.org 2017-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alsallakh, Bilal Amin Jourabloo Mao Ye Liu, Xiaoming Liu, Ren |
description | Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data. |
doi_str_mv | 10.48550/arxiv.1710.06501 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076831104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076831104</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-c3e0afaf0a9a772e22729f7aecc8860f0380178a5603b95a14a988f66d55fe253</originalsourceid><addsrcrecordid>eNotjk1LAzEUAIMgtNT-gN4WPG99eclLsieR9aPCopfey3NNcOuy0WS36r-3WE8DcxhGiJWEtXZEcMXpuzuspT0KMATyTMxRKVk6jTgTy5z3AIDGIpGaC3sbizoOh9hPYxcH7osnP6U_jF8xveei8ZyGou4552LT-cSpffu5vhDngfvsl_9ciO393bbelM3zw2N905RMqMtWeeDAAbhia9EjWqyCZd-2zhkIoBxI65gMqJeKWGqunAvGvBIFj6QW4vKU_Ujxc_J53O3jlI6beYdgjVNSgla_JrJGwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076831104</pqid></control><display><type>article</type><title>Do Convolutional Neural Networks Learn Class Hierarchy?</title><source>Publicly Available Content Database</source><creator>Alsallakh, Bilal ; Amin Jourabloo ; Mao Ye ; Liu, Xiaoming ; Liu, Ren</creator><creatorcontrib>Alsallakh, Bilal ; Amin Jourabloo ; Mao Ye ; Liu, Xiaoming ; Liu, Ren</creatorcontrib><description>Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1710.06501</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Analytics ; Artificial neural networks ; Confusion ; Detectors ; Identification methods ; Image classification ; Neural networks ; Structural hierarchy ; Training</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076831104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Alsallakh, Bilal</creatorcontrib><creatorcontrib>Amin Jourabloo</creatorcontrib><creatorcontrib>Mao Ye</creatorcontrib><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><title>Do Convolutional Neural Networks Learn Class Hierarchy?</title><title>arXiv.org</title><description>Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.</description><subject>Accuracy</subject><subject>Analytics</subject><subject>Artificial neural networks</subject><subject>Confusion</subject><subject>Detectors</subject><subject>Identification methods</subject><subject>Image classification</subject><subject>Neural networks</subject><subject>Structural hierarchy</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEUAIMgtNT-gN4WPG99eclLsieR9aPCopfey3NNcOuy0WS36r-3WE8DcxhGiJWEtXZEcMXpuzuspT0KMATyTMxRKVk6jTgTy5z3AIDGIpGaC3sbizoOh9hPYxcH7osnP6U_jF8xveei8ZyGou4552LT-cSpffu5vhDngfvsl_9ciO393bbelM3zw2N905RMqMtWeeDAAbhia9EjWqyCZd-2zhkIoBxI65gMqJeKWGqunAvGvBIFj6QW4vKU_Ujxc_J53O3jlI6beYdgjVNSgla_JrJGwQ</recordid><startdate>20171017</startdate><enddate>20171017</enddate><creator>Alsallakh, Bilal</creator><creator>Amin Jourabloo</creator><creator>Mao Ye</creator><creator>Liu, Xiaoming</creator><creator>Liu, Ren</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171017</creationdate><title>Do Convolutional Neural Networks Learn Class Hierarchy?</title><author>Alsallakh, Bilal ; Amin Jourabloo ; Mao Ye ; Liu, Xiaoming ; Liu, Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-c3e0afaf0a9a772e22729f7aecc8860f0380178a5603b95a14a988f66d55fe253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Analytics</topic><topic>Artificial neural networks</topic><topic>Confusion</topic><topic>Detectors</topic><topic>Identification methods</topic><topic>Image classification</topic><topic>Neural networks</topic><topic>Structural hierarchy</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Alsallakh, Bilal</creatorcontrib><creatorcontrib>Amin Jourabloo</creatorcontrib><creatorcontrib>Mao Ye</creatorcontrib><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsallakh, Bilal</au><au>Amin Jourabloo</au><au>Mao Ye</au><au>Liu, Xiaoming</au><au>Liu, Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do Convolutional Neural Networks Learn Class Hierarchy?</atitle><jtitle>arXiv.org</jtitle><date>2017-10-17</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1710.06501</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076831104 |
source | Publicly Available Content Database |
subjects | Accuracy Analytics Artificial neural networks Confusion Detectors Identification methods Image classification Neural networks Structural hierarchy Training |
title | Do Convolutional Neural Networks Learn Class Hierarchy? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20Convolutional%20Neural%20Networks%20Learn%20Class%20Hierarchy?&rft.jtitle=arXiv.org&rft.au=Alsallakh,%20Bilal&rft.date=2017-10-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1710.06501&rft_dat=%3Cproquest%3E2076831104%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-c3e0afaf0a9a772e22729f7aecc8860f0380178a5603b95a14a988f66d55fe253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076831104&rft_id=info:pmid/&rfr_iscdi=true |