Loading…
Shifts of finite type and random substitutions
We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substituti...
Saved in:
Published in: | arXiv.org 2017-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gohlke, Philipp Rust, Dan Spindeler, Timo |
description | We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods. |
doi_str_mv | 10.48550/arxiv.1712.05340 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076866971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076866971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-bc527e756cc6f9a486bb6040d080feaceebbaae2d13dab2ecd4819b6e22d782e3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgtNR-gLuA6xlvbp6zlOILCl3YfUkmNzRFZ-okI_r3FnRzzu4cxm4FtMppDfd--s5frbACW9BSwRVbopSicQpxwdalnAAAjUWt5ZK1b8ecauFj4ikPuRKvP2fifoh8umD84GUOpeY61zwO5YZdJ_9eaP3vFds_Pe43L8129_y6edg2XqNoQq_RktWm703qvHImBAMKIjhI5HuiELwnjEJGH5D6qJzogiHEaB2SXLG7v-x5Gj9nKvVwGudpuBwPCNY4Yzor5C_oLUWi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076866971</pqid></control><display><type>article</type><title>Shifts of finite type and random substitutions</title><source>Publicly Available Content Database</source><creator>Gohlke, Philipp ; Rust, Dan ; Spindeler, Timo</creator><creatorcontrib>Gohlke, Philipp ; Rust, Dan ; Spindeler, Timo</creatorcontrib><description>We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.05340</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Real numbers ; Substitutes</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076866971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Rust, Dan</creatorcontrib><creatorcontrib>Spindeler, Timo</creatorcontrib><title>Shifts of finite type and random substitutions</title><title>arXiv.org</title><description>We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.</description><subject>Real numbers</subject><subject>Substitutes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgtNR-gLuA6xlvbp6zlOILCl3YfUkmNzRFZ-okI_r3FnRzzu4cxm4FtMppDfd--s5frbACW9BSwRVbopSicQpxwdalnAAAjUWt5ZK1b8ecauFj4ikPuRKvP2fifoh8umD84GUOpeY61zwO5YZdJ_9eaP3vFds_Pe43L8129_y6edg2XqNoQq_RktWm703qvHImBAMKIjhI5HuiELwnjEJGH5D6qJzogiHEaB2SXLG7v-x5Gj9nKvVwGudpuBwPCNY4Yzor5C_oLUWi</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Gohlke, Philipp</creator><creator>Rust, Dan</creator><creator>Spindeler, Timo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171214</creationdate><title>Shifts of finite type and random substitutions</title><author>Gohlke, Philipp ; Rust, Dan ; Spindeler, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-bc527e756cc6f9a486bb6040d080feaceebbaae2d13dab2ecd4819b6e22d782e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Real numbers</topic><topic>Substitutes</topic><toplevel>online_resources</toplevel><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Rust, Dan</creatorcontrib><creatorcontrib>Spindeler, Timo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gohlke, Philipp</au><au>Rust, Dan</au><au>Spindeler, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shifts of finite type and random substitutions</atitle><jtitle>arXiv.org</jtitle><date>2017-12-14</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.05340</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076866971 |
source | Publicly Available Content Database |
subjects | Real numbers Substitutes |
title | Shifts of finite type and random substitutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shifts%20of%20finite%20type%20and%20random%20substitutions&rft.jtitle=arXiv.org&rft.au=Gohlke,%20Philipp&rft.date=2017-12-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.05340&rft_dat=%3Cproquest%3E2076866971%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-bc527e756cc6f9a486bb6040d080feaceebbaae2d13dab2ecd4819b6e22d782e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076866971&rft_id=info:pmid/&rfr_iscdi=true |