Loading…

Shifts of finite type and random substitutions

We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substituti...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-12
Main Authors: Gohlke, Philipp, Rust, Dan, Spindeler, Timo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gohlke, Philipp
Rust, Dan
Spindeler, Timo
description We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.
doi_str_mv 10.48550/arxiv.1712.05340
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076866971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076866971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-bc527e756cc6f9a486bb6040d080feaceebbaae2d13dab2ecd4819b6e22d782e3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgtNR-gLuA6xlvbp6zlOILCl3YfUkmNzRFZ-okI_r3FnRzzu4cxm4FtMppDfd--s5frbACW9BSwRVbopSicQpxwdalnAAAjUWt5ZK1b8ecauFj4ikPuRKvP2fifoh8umD84GUOpeY61zwO5YZdJ_9eaP3vFds_Pe43L8129_y6edg2XqNoQq_RktWm703qvHImBAMKIjhI5HuiELwnjEJGH5D6qJzogiHEaB2SXLG7v-x5Gj9nKvVwGudpuBwPCNY4Yzor5C_oLUWi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076866971</pqid></control><display><type>article</type><title>Shifts of finite type and random substitutions</title><source>Publicly Available Content Database</source><creator>Gohlke, Philipp ; Rust, Dan ; Spindeler, Timo</creator><creatorcontrib>Gohlke, Philipp ; Rust, Dan ; Spindeler, Timo</creatorcontrib><description>We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.05340</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Real numbers ; Substitutes</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076866971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Rust, Dan</creatorcontrib><creatorcontrib>Spindeler, Timo</creatorcontrib><title>Shifts of finite type and random substitutions</title><title>arXiv.org</title><description>We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.</description><subject>Real numbers</subject><subject>Substitutes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgtNR-gLuA6xlvbp6zlOILCl3YfUkmNzRFZ-okI_r3FnRzzu4cxm4FtMppDfd--s5frbACW9BSwRVbopSicQpxwdalnAAAjUWt5ZK1b8ecauFj4ikPuRKvP2fifoh8umD84GUOpeY61zwO5YZdJ_9eaP3vFds_Pe43L8129_y6edg2XqNoQq_RktWm703qvHImBAMKIjhI5HuiELwnjEJGH5D6qJzogiHEaB2SXLG7v-x5Gj9nKvVwGudpuBwPCNY4Yzor5C_oLUWi</recordid><startdate>20171214</startdate><enddate>20171214</enddate><creator>Gohlke, Philipp</creator><creator>Rust, Dan</creator><creator>Spindeler, Timo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171214</creationdate><title>Shifts of finite type and random substitutions</title><author>Gohlke, Philipp ; Rust, Dan ; Spindeler, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-bc527e756cc6f9a486bb6040d080feaceebbaae2d13dab2ecd4819b6e22d782e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Real numbers</topic><topic>Substitutes</topic><toplevel>online_resources</toplevel><creatorcontrib>Gohlke, Philipp</creatorcontrib><creatorcontrib>Rust, Dan</creatorcontrib><creatorcontrib>Spindeler, Timo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gohlke, Philipp</au><au>Rust, Dan</au><au>Spindeler, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shifts of finite type and random substitutions</atitle><jtitle>arXiv.org</jtitle><date>2017-12-14</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.05340</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076866971
source Publicly Available Content Database
subjects Real numbers
Substitutes
title Shifts of finite type and random substitutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shifts%20of%20finite%20type%20and%20random%20substitutions&rft.jtitle=arXiv.org&rft.au=Gohlke,%20Philipp&rft.date=2017-12-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.05340&rft_dat=%3Cproquest%3E2076866971%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-bc527e756cc6f9a486bb6040d080feaceebbaae2d13dab2ecd4819b6e22d782e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076866971&rft_id=info:pmid/&rfr_iscdi=true