Loading…
Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution
Variable selection for Gaussian process models is often done using automatic relevance determination, which uses the inverse length-scale parameter of each input variable as a proxy for variable relevance. This implicitly determined relevance has several drawbacks that prevent the selection of optim...
Saved in:
Published in: | arXiv.org 2019-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Paananen, Topi Piironen, Juho Andersen, Michael Riis Vehtari, Aki |
description | Variable selection for Gaussian process models is often done using automatic relevance determination, which uses the inverse length-scale parameter of each input variable as a proxy for variable relevance. This implicitly determined relevance has several drawbacks that prevent the selection of optimal input variables in terms of predictive performance. To improve on this, we propose two novel variable selection methods for Gaussian process models that utilize the predictions of a full model in the vicinity of the training points and thereby rank the variables based on their predictive relevance. Our empirical results on synthetic and real world data sets demonstrate improved variable selection compared to automatic relevance determination in terms of variability and predictive performance. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076883404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076883404</sourcerecordid><originalsourceid>FETCH-proquest_journals_20768834043</originalsourceid><addsrcrecordid>eNqNjcsKwjAQRYMgWLT_MOC6EJO-9uLjA8RtSe0Up5amZtJC_94IfoCruzn3nJWIlNaHpEyV2oiYuZNSqrxQWaYj8bobR6buERh7fHiyA7TWwcVMzGQGGJ19IDMyzGQCNDB5mskvYAbTL0wMtgX_RBgte3QUzqPDhoJrRmiIvaN6-op3Yt2anjH-7Vbsz6fb8ZqExntC9lVnJxesXClZ5GWpU5nq_6gPMM1KxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076883404</pqid></control><display><type>article</type><title>Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution</title><source>Publicly Available Content Database</source><creator>Paananen, Topi ; Piironen, Juho ; Andersen, Michael Riis ; Vehtari, Aki</creator><creatorcontrib>Paananen, Topi ; Piironen, Juho ; Andersen, Michael Riis ; Vehtari, Aki</creatorcontrib><description>Variable selection for Gaussian process models is often done using automatic relevance determination, which uses the inverse length-scale parameter of each input variable as a proxy for variable relevance. This implicitly determined relevance has several drawbacks that prevent the selection of optimal input variables in terms of predictive performance. To improve on this, we propose two novel variable selection methods for Gaussian process models that utilize the predictions of a full model in the vicinity of the training points and thereby rank the variables based on their predictive relevance. Our empirical results on synthetic and real world data sets demonstrate improved variable selection compared to automatic relevance determination in terms of variability and predictive performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Empirical analysis ; Gaussian process ; Mathematical models ; Performance prediction ; Sensitivity analysis</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076883404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Paananen, Topi</creatorcontrib><creatorcontrib>Piironen, Juho</creatorcontrib><creatorcontrib>Andersen, Michael Riis</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><title>Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution</title><title>arXiv.org</title><description>Variable selection for Gaussian process models is often done using automatic relevance determination, which uses the inverse length-scale parameter of each input variable as a proxy for variable relevance. This implicitly determined relevance has several drawbacks that prevent the selection of optimal input variables in terms of predictive performance. To improve on this, we propose two novel variable selection methods for Gaussian process models that utilize the predictions of a full model in the vicinity of the training points and thereby rank the variables based on their predictive relevance. Our empirical results on synthetic and real world data sets demonstrate improved variable selection compared to automatic relevance determination in terms of variability and predictive performance.</description><subject>Bayesian analysis</subject><subject>Empirical analysis</subject><subject>Gaussian process</subject><subject>Mathematical models</subject><subject>Performance prediction</subject><subject>Sensitivity analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcsKwjAQRYMgWLT_MOC6EJO-9uLjA8RtSe0Up5amZtJC_94IfoCruzn3nJWIlNaHpEyV2oiYuZNSqrxQWaYj8bobR6buERh7fHiyA7TWwcVMzGQGGJ19IDMyzGQCNDB5mskvYAbTL0wMtgX_RBgte3QUzqPDhoJrRmiIvaN6-op3Yt2anjH-7Vbsz6fb8ZqExntC9lVnJxesXClZ5GWpU5nq_6gPMM1KxA</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>Paananen, Topi</creator><creator>Piironen, Juho</creator><creator>Andersen, Michael Riis</creator><creator>Vehtari, Aki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190306</creationdate><title>Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution</title><author>Paananen, Topi ; Piironen, Juho ; Andersen, Michael Riis ; Vehtari, Aki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20768834043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Empirical analysis</topic><topic>Gaussian process</topic><topic>Mathematical models</topic><topic>Performance prediction</topic><topic>Sensitivity analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Paananen, Topi</creatorcontrib><creatorcontrib>Piironen, Juho</creatorcontrib><creatorcontrib>Andersen, Michael Riis</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paananen, Topi</au><au>Piironen, Juho</au><au>Andersen, Michael Riis</au><au>Vehtari, Aki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution</atitle><jtitle>arXiv.org</jtitle><date>2019-03-06</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Variable selection for Gaussian process models is often done using automatic relevance determination, which uses the inverse length-scale parameter of each input variable as a proxy for variable relevance. This implicitly determined relevance has several drawbacks that prevent the selection of optimal input variables in terms of predictive performance. To improve on this, we propose two novel variable selection methods for Gaussian process models that utilize the predictions of a full model in the vicinity of the training points and thereby rank the variables based on their predictive relevance. Our empirical results on synthetic and real world data sets demonstrate improved variable selection compared to automatic relevance determination in terms of variability and predictive performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076883404 |
source | Publicly Available Content Database |
subjects | Bayesian analysis Empirical analysis Gaussian process Mathematical models Performance prediction Sensitivity analysis |
title | Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Variable%20selection%20for%20Gaussian%20processes%20via%20sensitivity%20analysis%20of%20the%20posterior%20predictive%20distribution&rft.jtitle=arXiv.org&rft.au=Paananen,%20Topi&rft.date=2019-03-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076883404%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20768834043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076883404&rft_id=info:pmid/&rfr_iscdi=true |