Loading…

Lattice point visibility on generalized lines of sight

For a fixed \(b\in\mathbb{N}=\{1,2,3,\ldots\}\) we say that a point \((r,s)\) in the integer lattice \(\mathbb{Z} \times \mathbb{Z}\) is \(b\)-visible from the origin if it lies on the graph of a power function \(f(x)=ax^b\) with \(a\in\mathbb{Q}\) and no other integer lattice point lies on this cur...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-10
Main Authors: Edray Herber Goins, Harris, Pamela E, Kubik, Bethany, Mbirika, Aba
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Edray Herber Goins
Harris, Pamela E
Kubik, Bethany
Mbirika, Aba
description For a fixed \(b\in\mathbb{N}=\{1,2,3,\ldots\}\) we say that a point \((r,s)\) in the integer lattice \(\mathbb{Z} \times \mathbb{Z}\) is \(b\)-visible from the origin if it lies on the graph of a power function \(f(x)=ax^b\) with \(a\in\mathbb{Q}\) and no other integer lattice point lies on this curve (i.e., line of sight) between \((0,0)\) and \((r,s)\). We prove that the proportion of \(b\)-visible integer lattice points is given by \(1/\zeta(b+1)\), where \(\zeta(s)\) denotes the Riemann zeta function. We also show that even though the proportion of \(b\)-visible lattice points approaches \(1\) as \(b\) approaches infinity, there exist arbitrarily large rectangular arrays of \(b\)-invisible lattice points for any fixed \(b\). This work specialized to \(b=1\) recovers original results from the classical lattice point visibility setting where the lines of sight are given by linear functions with rational slope through the origin.
doi_str_mv 10.48550/arxiv.1710.04554
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076883986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076883986</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-68c7d6ac4b434fce97b8a35a83692182525aaecaee57732baeba87aa9126c3693</originalsourceid><addsrcrecordid>eNotjc1KAzEURoMgWGofwF3A9dTMTW6SWUrxDwbcdF_upHdqypCpk7SoT--Arj44HM4nxF2t1sYjqgeavuJlXbsZKINorsQCtK4rbwBuxCrno1IKrANEvRC2pVJiYHkaYyryEnPs4hDLtxyTPHDiiYb4w3s5xMRZjr3M8fBRbsV1T0Pm1f8uxfb5abt5rdr3l7fNY1sRgq2sD25vKZjOaNMHblznSSN5bRuoPSAgEQdiRuc0dMQdeUfU1GDD7OiluP_Lnqbx88y57I7jeUrz4w6Us97rxlv9C0fyR5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076883986</pqid></control><display><type>article</type><title>Lattice point visibility on generalized lines of sight</title><source>Publicly Available Content Database</source><creator>Edray Herber Goins ; Harris, Pamela E ; Kubik, Bethany ; Mbirika, Aba</creator><creatorcontrib>Edray Herber Goins ; Harris, Pamela E ; Kubik, Bethany ; Mbirika, Aba</creatorcontrib><description>For a fixed \(b\in\mathbb{N}=\{1,2,3,\ldots\}\) we say that a point \((r,s)\) in the integer lattice \(\mathbb{Z} \times \mathbb{Z}\) is \(b\)-visible from the origin if it lies on the graph of a power function \(f(x)=ax^b\) with \(a\in\mathbb{Q}\) and no other integer lattice point lies on this curve (i.e., line of sight) between \((0,0)\) and \((r,s)\). We prove that the proportion of \(b\)-visible integer lattice points is given by \(1/\zeta(b+1)\), where \(\zeta(s)\) denotes the Riemann zeta function. We also show that even though the proportion of \(b\)-visible lattice points approaches \(1\) as \(b\) approaches infinity, there exist arbitrarily large rectangular arrays of \(b\)-invisible lattice points for any fixed \(b\). This work specialized to \(b=1\) recovers original results from the classical lattice point visibility setting where the lines of sight are given by linear functions with rational slope through the origin.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1710.04554</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Linear functions ; Visibility</subject><ispartof>arXiv.org, 2017-10</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076883986?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Edray Herber Goins</creatorcontrib><creatorcontrib>Harris, Pamela E</creatorcontrib><creatorcontrib>Kubik, Bethany</creatorcontrib><creatorcontrib>Mbirika, Aba</creatorcontrib><title>Lattice point visibility on generalized lines of sight</title><title>arXiv.org</title><description>For a fixed \(b\in\mathbb{N}=\{1,2,3,\ldots\}\) we say that a point \((r,s)\) in the integer lattice \(\mathbb{Z} \times \mathbb{Z}\) is \(b\)-visible from the origin if it lies on the graph of a power function \(f(x)=ax^b\) with \(a\in\mathbb{Q}\) and no other integer lattice point lies on this curve (i.e., line of sight) between \((0,0)\) and \((r,s)\). We prove that the proportion of \(b\)-visible integer lattice points is given by \(1/\zeta(b+1)\), where \(\zeta(s)\) denotes the Riemann zeta function. We also show that even though the proportion of \(b\)-visible lattice points approaches \(1\) as \(b\) approaches infinity, there exist arbitrarily large rectangular arrays of \(b\)-invisible lattice points for any fixed \(b\). This work specialized to \(b=1\) recovers original results from the classical lattice point visibility setting where the lines of sight are given by linear functions with rational slope through the origin.</description><subject>Linear functions</subject><subject>Visibility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1KAzEURoMgWGofwF3A9dTMTW6SWUrxDwbcdF_upHdqypCpk7SoT--Arj44HM4nxF2t1sYjqgeavuJlXbsZKINorsQCtK4rbwBuxCrno1IKrANEvRC2pVJiYHkaYyryEnPs4hDLtxyTPHDiiYb4w3s5xMRZjr3M8fBRbsV1T0Pm1f8uxfb5abt5rdr3l7fNY1sRgq2sD25vKZjOaNMHblznSSN5bRuoPSAgEQdiRuc0dMQdeUfU1GDD7OiluP_Lnqbx88y57I7jeUrz4w6Us97rxlv9C0fyR5E</recordid><startdate>20171012</startdate><enddate>20171012</enddate><creator>Edray Herber Goins</creator><creator>Harris, Pamela E</creator><creator>Kubik, Bethany</creator><creator>Mbirika, Aba</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171012</creationdate><title>Lattice point visibility on generalized lines of sight</title><author>Edray Herber Goins ; Harris, Pamela E ; Kubik, Bethany ; Mbirika, Aba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-68c7d6ac4b434fce97b8a35a83692182525aaecaee57732baeba87aa9126c3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Linear functions</topic><topic>Visibility</topic><toplevel>online_resources</toplevel><creatorcontrib>Edray Herber Goins</creatorcontrib><creatorcontrib>Harris, Pamela E</creatorcontrib><creatorcontrib>Kubik, Bethany</creatorcontrib><creatorcontrib>Mbirika, Aba</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edray Herber Goins</au><au>Harris, Pamela E</au><au>Kubik, Bethany</au><au>Mbirika, Aba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice point visibility on generalized lines of sight</atitle><jtitle>arXiv.org</jtitle><date>2017-10-12</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>For a fixed \(b\in\mathbb{N}=\{1,2,3,\ldots\}\) we say that a point \((r,s)\) in the integer lattice \(\mathbb{Z} \times \mathbb{Z}\) is \(b\)-visible from the origin if it lies on the graph of a power function \(f(x)=ax^b\) with \(a\in\mathbb{Q}\) and no other integer lattice point lies on this curve (i.e., line of sight) between \((0,0)\) and \((r,s)\). We prove that the proportion of \(b\)-visible integer lattice points is given by \(1/\zeta(b+1)\), where \(\zeta(s)\) denotes the Riemann zeta function. We also show that even though the proportion of \(b\)-visible lattice points approaches \(1\) as \(b\) approaches infinity, there exist arbitrarily large rectangular arrays of \(b\)-invisible lattice points for any fixed \(b\). This work specialized to \(b=1\) recovers original results from the classical lattice point visibility setting where the lines of sight are given by linear functions with rational slope through the origin.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1710.04554</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076883986
source Publicly Available Content Database
subjects Linear functions
Visibility
title Lattice point visibility on generalized lines of sight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20point%20visibility%20on%20generalized%20lines%20of%20sight&rft.jtitle=arXiv.org&rft.au=Edray%20Herber%20Goins&rft.date=2017-10-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1710.04554&rft_dat=%3Cproquest%3E2076883986%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-68c7d6ac4b434fce97b8a35a83692182525aaecaee57732baeba87aa9126c3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076883986&rft_id=info:pmid/&rfr_iscdi=true