Loading…

Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

We report on the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4-dibromo-para-terphenyl as molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, whic...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-12
Main Authors: Merino-Díez, Néstor, Garcia-Lekue, Aran, Carbonell-Sanromà, Eduard, Li, Jingcheng, Corso, Martina, Colazzo, Luciano, Sedona, Francesco, Sánchez-Portal, Daniel, Pascual, Jose I, de Oteyza, Dimas G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Merino-Díez, Néstor
Garcia-Lekue, Aran
Carbonell-Sanromà, Eduard
Li, Jingcheng
Corso, Martina
Colazzo, Luciano
Sedona, Francesco
Sánchez-Portal, Daniel
Pascual, Jose I
de Oteyza, Dimas G
description We report on the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4-dibromo-para-terphenyl as molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbons band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in graphene nanoribbon-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbates band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.
doi_str_mv 10.48550/arxiv.1712.06665
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076893379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076893379</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-a16e771673e35692571017123efa507ccb8334bcd2566d047ffe23ef3fe1b65c3</originalsourceid><addsrcrecordid>eNotT09LwzAcDYLgmPsA3gJe9NCa5Nck7XFOV4WiIgOPM21_tRlbWpN2-PHt0NPj8f7xCLniLE5SKdmd8T_2GHPNRcyUUvKMzAQAj9JEiAuyCGHHGBNKCylhRj4_bD200QP26Gp0A703rqa56al1dOkPVWusp7k3fYsO6Ytxnbdl2blA3_GIZh_oGv3B0mJie_pmnbPui3ZTeLzhnN9ekvNmcuHiH-dks37crJ6i4jV_Xi2LyEiRRYYr1JorDQhSZUJqzk4XABsjma6qMgVIyqoWUqmaJbpp8CRCg7xUsoI5uf6r7X33PWIYtrtu9G5a3AqmVZoB6Ax-AXIHU-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076893379</pqid></control><display><type>article</type><title>Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)</title><source>Publicly Available Content Database</source><creator>Merino-Díez, Néstor ; Garcia-Lekue, Aran ; Carbonell-Sanromà, Eduard ; Li, Jingcheng ; Corso, Martina ; Colazzo, Luciano ; Sedona, Francesco ; Sánchez-Portal, Daniel ; Pascual, Jose I ; de Oteyza, Dimas G</creator><creatorcontrib>Merino-Díez, Néstor ; Garcia-Lekue, Aran ; Carbonell-Sanromà, Eduard ; Li, Jingcheng ; Corso, Martina ; Colazzo, Luciano ; Sedona, Francesco ; Sánchez-Portal, Daniel ; Pascual, Jose I ; de Oteyza, Dimas G</creatorcontrib><description>We report on the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4-dibromo-para-terphenyl as molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbons band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in graphene nanoribbon-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbates band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.06665</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adsorbates ; Band gap ; Conduction bands ; Contact potentials ; Energy gap ; Energy levels ; Fermi level ; Gold ; Graphene ; Nanoribbons ; Nanowires ; Organic chemistry ; Pinning ; Substrates</subject><ispartof>arXiv.org, 2017-12</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076893379?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Merino-Díez, Néstor</creatorcontrib><creatorcontrib>Garcia-Lekue, Aran</creatorcontrib><creatorcontrib>Carbonell-Sanromà, Eduard</creatorcontrib><creatorcontrib>Li, Jingcheng</creatorcontrib><creatorcontrib>Corso, Martina</creatorcontrib><creatorcontrib>Colazzo, Luciano</creatorcontrib><creatorcontrib>Sedona, Francesco</creatorcontrib><creatorcontrib>Sánchez-Portal, Daniel</creatorcontrib><creatorcontrib>Pascual, Jose I</creatorcontrib><creatorcontrib>de Oteyza, Dimas G</creatorcontrib><title>Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)</title><title>arXiv.org</title><description>We report on the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4-dibromo-para-terphenyl as molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbons band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in graphene nanoribbon-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbates band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.</description><subject>Adsorbates</subject><subject>Band gap</subject><subject>Conduction bands</subject><subject>Contact potentials</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Fermi level</subject><subject>Gold</subject><subject>Graphene</subject><subject>Nanoribbons</subject><subject>Nanowires</subject><subject>Organic chemistry</subject><subject>Pinning</subject><subject>Substrates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT09LwzAcDYLgmPsA3gJe9NCa5Nck7XFOV4WiIgOPM21_tRlbWpN2-PHt0NPj8f7xCLniLE5SKdmd8T_2GHPNRcyUUvKMzAQAj9JEiAuyCGHHGBNKCylhRj4_bD200QP26Gp0A703rqa56al1dOkPVWusp7k3fYsO6Ytxnbdl2blA3_GIZh_oGv3B0mJie_pmnbPui3ZTeLzhnN9ekvNmcuHiH-dks37crJ6i4jV_Xi2LyEiRRYYr1JorDQhSZUJqzk4XABsjma6qMgVIyqoWUqmaJbpp8CRCg7xUsoI5uf6r7X33PWIYtrtu9G5a3AqmVZoB6Ax-AXIHU-U</recordid><startdate>20171218</startdate><enddate>20171218</enddate><creator>Merino-Díez, Néstor</creator><creator>Garcia-Lekue, Aran</creator><creator>Carbonell-Sanromà, Eduard</creator><creator>Li, Jingcheng</creator><creator>Corso, Martina</creator><creator>Colazzo, Luciano</creator><creator>Sedona, Francesco</creator><creator>Sánchez-Portal, Daniel</creator><creator>Pascual, Jose I</creator><creator>de Oteyza, Dimas G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171218</creationdate><title>Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)</title><author>Merino-Díez, Néstor ; Garcia-Lekue, Aran ; Carbonell-Sanromà, Eduard ; Li, Jingcheng ; Corso, Martina ; Colazzo, Luciano ; Sedona, Francesco ; Sánchez-Portal, Daniel ; Pascual, Jose I ; de Oteyza, Dimas G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-a16e771673e35692571017123efa507ccb8334bcd2566d047ffe23ef3fe1b65c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorbates</topic><topic>Band gap</topic><topic>Conduction bands</topic><topic>Contact potentials</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Fermi level</topic><topic>Gold</topic><topic>Graphene</topic><topic>Nanoribbons</topic><topic>Nanowires</topic><topic>Organic chemistry</topic><topic>Pinning</topic><topic>Substrates</topic><toplevel>online_resources</toplevel><creatorcontrib>Merino-Díez, Néstor</creatorcontrib><creatorcontrib>Garcia-Lekue, Aran</creatorcontrib><creatorcontrib>Carbonell-Sanromà, Eduard</creatorcontrib><creatorcontrib>Li, Jingcheng</creatorcontrib><creatorcontrib>Corso, Martina</creatorcontrib><creatorcontrib>Colazzo, Luciano</creatorcontrib><creatorcontrib>Sedona, Francesco</creatorcontrib><creatorcontrib>Sánchez-Portal, Daniel</creatorcontrib><creatorcontrib>Pascual, Jose I</creatorcontrib><creatorcontrib>de Oteyza, Dimas G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merino-Díez, Néstor</au><au>Garcia-Lekue, Aran</au><au>Carbonell-Sanromà, Eduard</au><au>Li, Jingcheng</au><au>Corso, Martina</au><au>Colazzo, Luciano</au><au>Sedona, Francesco</au><au>Sánchez-Portal, Daniel</au><au>Pascual, Jose I</au><au>de Oteyza, Dimas G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)</atitle><jtitle>arXiv.org</jtitle><date>2017-12-18</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We report on the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4-dibromo-para-terphenyl as molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbons band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in graphene nanoribbon-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbates band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.06665</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2076893379
source Publicly Available Content Database
subjects Adsorbates
Band gap
Conduction bands
Contact potentials
Energy gap
Energy levels
Fermi level
Gold
Graphene
Nanoribbons
Nanowires
Organic chemistry
Pinning
Substrates
title Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Width-Dependent%20Band%20Gap%20in%20Armchair%20Graphene%20Nanoribbons%20Reveals%20Fermi%20Level%20Pinning%20on%20Au(111)&rft.jtitle=arXiv.org&rft.au=Merino-D%C3%ADez,%20N%C3%A9stor&rft.date=2017-12-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.06665&rft_dat=%3Cproquest%3E2076893379%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-a16e771673e35692571017123efa507ccb8334bcd2566d047ffe23ef3fe1b65c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076893379&rft_id=info:pmid/&rfr_iscdi=true