Loading…
A hybrid simulation for a system of singularly perturbed two-point reaction-diffusion equations
This study concerns with singularly perturbed systems of second-order reaction-diffusion equations in ODE's. To handle this type of problems, a numerical-asymptotic hybrid method is employed. In this hybrid method, an efficient asymptotic method, the so-called Successive complementary expansion...
Saved in:
Published in: | arXiv.org 2018-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cengizci, Suleyman Srinivasan, Natesan Atay, M Tarik |
description | This study concerns with singularly perturbed systems of second-order reaction-diffusion equations in ODE's. To handle this type of problems, a numerical-asymptotic hybrid method is employed. In this hybrid method, an efficient asymptotic method, the so-called Successive complementary expansion method (SCEM) is applied first and then, a numerical method based on finite differences is proposed to approximate the solution of the corresponding singularly perturbed reaction-diffusion systems. Two illustrative examples are provided to show the efficiency and easy-applicability of the present method with convergence properties. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2076918361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076918361</sourcerecordid><originalsourceid>FETCH-proquest_journals_20769183613</originalsourceid><addsrcrecordid>eNqNjEsKwjAURYMgWLR7eOA4kCb241BEcQHOS2sTTWmTNi9BuntbcQGO7uDcc1Yk4kIktDhwviExYssY41nO01REpDzBa6qdbgB1H7rKa2tAWQcV4IRe9mDVjMxzZq6bYJDOB1fLBvzb0sFq48HJ6rF4tNFKBVwKcgzfFO7IWlUdyvi3W7K_Xu7nGx2cHYNEX7Y2ODOjkrM8OyaFyBLx3-sDI3JFrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076918361</pqid></control><display><type>article</type><title>A hybrid simulation for a system of singularly perturbed two-point reaction-diffusion equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cengizci, Suleyman ; Srinivasan, Natesan ; Atay, M Tarik</creator><creatorcontrib>Cengizci, Suleyman ; Srinivasan, Natesan ; Atay, M Tarik</creatorcontrib><description>This study concerns with singularly perturbed systems of second-order reaction-diffusion equations in ODE's. To handle this type of problems, a numerical-asymptotic hybrid method is employed. In this hybrid method, an efficient asymptotic method, the so-called Successive complementary expansion method (SCEM) is applied first and then, a numerical method based on finite differences is proposed to approximate the solution of the corresponding singularly perturbed reaction-diffusion systems. Two illustrative examples are provided to show the efficiency and easy-applicability of the present method with convergence properties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Computer simulation ; Diffusion ; Hybrid systems ; Mathematical analysis ; Numerical methods ; Reaction-diffusion equations</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2076918361?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Cengizci, Suleyman</creatorcontrib><creatorcontrib>Srinivasan, Natesan</creatorcontrib><creatorcontrib>Atay, M Tarik</creatorcontrib><title>A hybrid simulation for a system of singularly perturbed two-point reaction-diffusion equations</title><title>arXiv.org</title><description>This study concerns with singularly perturbed systems of second-order reaction-diffusion equations in ODE's. To handle this type of problems, a numerical-asymptotic hybrid method is employed. In this hybrid method, an efficient asymptotic method, the so-called Successive complementary expansion method (SCEM) is applied first and then, a numerical method based on finite differences is proposed to approximate the solution of the corresponding singularly perturbed reaction-diffusion systems. Two illustrative examples are provided to show the efficiency and easy-applicability of the present method with convergence properties.</description><subject>Asymptotic methods</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Hybrid systems</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Reaction-diffusion equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEsKwjAURYMgWLR7eOA4kCb241BEcQHOS2sTTWmTNi9BuntbcQGO7uDcc1Yk4kIktDhwviExYssY41nO01REpDzBa6qdbgB1H7rKa2tAWQcV4IRe9mDVjMxzZq6bYJDOB1fLBvzb0sFq48HJ6rF4tNFKBVwKcgzfFO7IWlUdyvi3W7K_Xu7nGx2cHYNEX7Y2ODOjkrM8OyaFyBLx3-sDI3JFrg</recordid><startdate>20180813</startdate><enddate>20180813</enddate><creator>Cengizci, Suleyman</creator><creator>Srinivasan, Natesan</creator><creator>Atay, M Tarik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180813</creationdate><title>A hybrid simulation for a system of singularly perturbed two-point reaction-diffusion equations</title><author>Cengizci, Suleyman ; Srinivasan, Natesan ; Atay, M Tarik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20769183613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Hybrid systems</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Reaction-diffusion equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Cengizci, Suleyman</creatorcontrib><creatorcontrib>Srinivasan, Natesan</creatorcontrib><creatorcontrib>Atay, M Tarik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cengizci, Suleyman</au><au>Srinivasan, Natesan</au><au>Atay, M Tarik</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A hybrid simulation for a system of singularly perturbed two-point reaction-diffusion equations</atitle><jtitle>arXiv.org</jtitle><date>2018-08-13</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>This study concerns with singularly perturbed systems of second-order reaction-diffusion equations in ODE's. To handle this type of problems, a numerical-asymptotic hybrid method is employed. In this hybrid method, an efficient asymptotic method, the so-called Successive complementary expansion method (SCEM) is applied first and then, a numerical method based on finite differences is proposed to approximate the solution of the corresponding singularly perturbed reaction-diffusion systems. Two illustrative examples are provided to show the efficiency and easy-applicability of the present method with convergence properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2076918361 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Asymptotic methods Computer simulation Diffusion Hybrid systems Mathematical analysis Numerical methods Reaction-diffusion equations |
title | A hybrid simulation for a system of singularly perturbed two-point reaction-diffusion equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20hybrid%20simulation%20for%20a%20system%20of%20singularly%20perturbed%20two-point%20reaction-diffusion%20equations&rft.jtitle=arXiv.org&rft.au=Cengizci,%20Suleyman&rft.date=2018-08-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2076918361%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20769183613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2076918361&rft_id=info:pmid/&rfr_iscdi=true |