Loading…
Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants
Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy ce...
Saved in:
Published in: | arXiv.org 2016-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Clark, W Edwin Saito, Masahico |
description | Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2077047291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077047291</sourcerecordid><originalsourceid>FETCH-proquest_journals_20770472913</originalsourceid><addsrcrecordid>eNqNy9EKwiAYBWAJgkbtHYSuB063rMsYi6KbBdHtMHPhEP-lLurtE-oBujpwzncmKKGM5dm6oHSGUu97QghdcVqWLEHN1tzV1QktceNgUC5o5TF0-DQKezMK16-grNdgPY4FvggzfkEF8i0jOFoI-GCfwmlhg1-gaSeMV-kv52i5q8_VPhscPOI1tD2MzsappYRzUnC6ydl_6gNPWz7O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077047291</pqid></control><display><type>article</type><title>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</title><source>Publicly Available Content Database</source><creator>Clark, W Edwin ; Saito, Masahico</creator><creatorcontrib>Clark, W Edwin ; Saito, Masahico</creatorcontrib><description>Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Conjugation ; Invariants ; Knots</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2077047291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><title>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</title><title>arXiv.org</title><description>Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined.</description><subject>Algebra</subject><subject>Conjugation</subject><subject>Invariants</subject><subject>Knots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy9EKwiAYBWAJgkbtHYSuB063rMsYi6KbBdHtMHPhEP-lLurtE-oBujpwzncmKKGM5dm6oHSGUu97QghdcVqWLEHN1tzV1QktceNgUC5o5TF0-DQKezMK16-grNdgPY4FvggzfkEF8i0jOFoI-GCfwmlhg1-gaSeMV-kv52i5q8_VPhscPOI1tD2MzsappYRzUnC6ydl_6gNPWz7O</recordid><startdate>20160319</startdate><enddate>20160319</enddate><creator>Clark, W Edwin</creator><creator>Saito, Masahico</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160319</creationdate><title>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</title><author>Clark, W Edwin ; Saito, Masahico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20770472913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Conjugation</topic><topic>Invariants</topic><topic>Knots</topic><toplevel>online_resources</toplevel><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, W Edwin</au><au>Saito, Masahico</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</atitle><jtitle>arXiv.org</jtitle><date>2016-03-19</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2077047291 |
source | Publicly Available Content Database |
subjects | Algebra Conjugation Invariants Knots |
title | Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Algebraic%20Properties%20of%20Quandle%20Extensions%20and%20Values%20of%20Cocycle%20Knot%20Invariants&rft.jtitle=arXiv.org&rft.au=Clark,%20W%20Edwin&rft.date=2016-03-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2077047291%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20770472913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2077047291&rft_id=info:pmid/&rfr_iscdi=true |