Loading…

Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants

Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy ce...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-03
Main Authors: Clark, W Edwin, Saito, Masahico
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Clark, W Edwin
Saito, Masahico
description Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2077047291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077047291</sourcerecordid><originalsourceid>FETCH-proquest_journals_20770472913</originalsourceid><addsrcrecordid>eNqNy9EKwiAYBWAJgkbtHYSuB063rMsYi6KbBdHtMHPhEP-lLurtE-oBujpwzncmKKGM5dm6oHSGUu97QghdcVqWLEHN1tzV1QktceNgUC5o5TF0-DQKezMK16-grNdgPY4FvggzfkEF8i0jOFoI-GCfwmlhg1-gaSeMV-kv52i5q8_VPhscPOI1tD2MzsappYRzUnC6ydl_6gNPWz7O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077047291</pqid></control><display><type>article</type><title>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</title><source>Publicly Available Content Database</source><creator>Clark, W Edwin ; Saito, Masahico</creator><creatorcontrib>Clark, W Edwin ; Saito, Masahico</creatorcontrib><description>Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Conjugation ; Invariants ; Knots</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2077047291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><title>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</title><title>arXiv.org</title><description>Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined.</description><subject>Algebra</subject><subject>Conjugation</subject><subject>Invariants</subject><subject>Knots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy9EKwiAYBWAJgkbtHYSuB063rMsYi6KbBdHtMHPhEP-lLurtE-oBujpwzncmKKGM5dm6oHSGUu97QghdcVqWLEHN1tzV1QktceNgUC5o5TF0-DQKezMK16-grNdgPY4FvggzfkEF8i0jOFoI-GCfwmlhg1-gaSeMV-kv52i5q8_VPhscPOI1tD2MzsappYRzUnC6ydl_6gNPWz7O</recordid><startdate>20160319</startdate><enddate>20160319</enddate><creator>Clark, W Edwin</creator><creator>Saito, Masahico</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160319</creationdate><title>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</title><author>Clark, W Edwin ; Saito, Masahico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20770472913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Conjugation</topic><topic>Invariants</topic><topic>Knots</topic><toplevel>online_resources</toplevel><creatorcontrib>Clark, W Edwin</creatorcontrib><creatorcontrib>Saito, Masahico</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, W Edwin</au><au>Saito, Masahico</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants</atitle><jtitle>arXiv.org</jtitle><date>2016-03-19</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles. We show that the quandle 2-cocycle invariant with respect to a non-trivial \(2\)-cocycle is constant, or takes some other restricted form, for classical knots when the corresponding extensions satisfy certain algebraic conditions. In particular, if an abelian extension is a conjugation quandle, then the corresponding cocycle invariant is constant. Specific examples are presented from the list of connected quandles of order less than 48. Relations among various quandle epimorphisms involved are also examined.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2077047291
source Publicly Available Content Database
subjects Algebra
Conjugation
Invariants
Knots
title Algebraic Properties of Quandle Extensions and Values of Cocycle Knot Invariants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Algebraic%20Properties%20of%20Quandle%20Extensions%20and%20Values%20of%20Cocycle%20Knot%20Invariants&rft.jtitle=arXiv.org&rft.au=Clark,%20W%20Edwin&rft.date=2016-03-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2077047291%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20770472913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2077047291&rft_id=info:pmid/&rfr_iscdi=true