Loading…

On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)

Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-01
Main Authors: Jung Kyu Canci, Paladino, Laura
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jung Kyu Canci
Paladino, Laura
description Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078113174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078113174</sourcerecordid><originalsourceid>FETCH-proquest_journals_20781131743</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTv8IFLOxTy09ruYnEQXBwLJW0TTKlJTFIX8d1V8AGc7objFiiijJGsyildodj7EWNMdyUtChah01mDdcIKp8ygerBG6eDBSHA8KKP5BHLW_Vc9DEIqLQYwD-GgSZobD9eue9av1iYhbdINWko-eRH_uEbb-nDZHzPrzH0WPrSjmd3n6VuKy4oQRsqc_Ve9AUxgPT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078113174</pqid></control><display><type>article</type><title>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</title><source>Publicly Available Content (ProQuest)</source><creator>Jung Kyu Canci ; Paladino, Laura</creator><creatorcontrib>Jung Kyu Canci ; Paladino, Laura</creatorcontrib><description>Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codes ; Conjugation ; Error analysis ; Fixed points (mathematics) ; Mathematical analysis ; Periodic variations ; Polynomials ; Rational functions ; Reduction</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078113174?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Jung Kyu Canci</creatorcontrib><creatorcontrib>Paladino, Laura</creatorcontrib><title>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</title><title>arXiv.org</title><description>Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points.</description><subject>Codes</subject><subject>Conjugation</subject><subject>Error analysis</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Periodic variations</subject><subject>Polynomials</subject><subject>Rational functions</subject><subject>Reduction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjL0KwjAYAIMgWLTv8IFLOxTy09ruYnEQXBwLJW0TTKlJTFIX8d1V8AGc7objFiiijJGsyildodj7EWNMdyUtChah01mDdcIKp8ygerBG6eDBSHA8KKP5BHLW_Vc9DEIqLQYwD-GgSZobD9eue9av1iYhbdINWko-eRH_uEbb-nDZHzPrzH0WPrSjmd3n6VuKy4oQRsqc_Ve9AUxgPT0</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Jung Kyu Canci</creator><creator>Paladino, Laura</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160127</creationdate><title>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</title><author>Jung Kyu Canci ; Paladino, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20781131743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Codes</topic><topic>Conjugation</topic><topic>Error analysis</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Periodic variations</topic><topic>Polynomials</topic><topic>Rational functions</topic><topic>Reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Jung Kyu Canci</creatorcontrib><creatorcontrib>Paladino, Laura</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung Kyu Canci</au><au>Paladino, Laura</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</atitle><jtitle>arXiv.org</jtitle><date>2016-01-27</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078113174
source Publicly Available Content (ProQuest)
subjects Codes
Conjugation
Error analysis
Fixed points (mathematics)
Mathematical analysis
Periodic variations
Polynomials
Rational functions
Reduction
title On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20preperiodic%20points%20of%20rational%20functions%20defined%20over%20%5C(%5Cmathbb%7BF%7D_p(t)%5C)&rft.jtitle=arXiv.org&rft.au=Jung%20Kyu%20Canci&rft.date=2016-01-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078113174%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20781131743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078113174&rft_id=info:pmid/&rfr_iscdi=true