Loading…
On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)
Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defin...
Saved in:
Published in: | arXiv.org 2016-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jung Kyu Canci Paladino, Laura |
description | Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078113174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078113174</sourcerecordid><originalsourceid>FETCH-proquest_journals_20781131743</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTv8IFLOxTy09ruYnEQXBwLJW0TTKlJTFIX8d1V8AGc7objFiiijJGsyildodj7EWNMdyUtChah01mDdcIKp8ygerBG6eDBSHA8KKP5BHLW_Vc9DEIqLQYwD-GgSZobD9eue9av1iYhbdINWko-eRH_uEbb-nDZHzPrzH0WPrSjmd3n6VuKy4oQRsqc_Ve9AUxgPT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078113174</pqid></control><display><type>article</type><title>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</title><source>Publicly Available Content (ProQuest)</source><creator>Jung Kyu Canci ; Paladino, Laura</creator><creatorcontrib>Jung Kyu Canci ; Paladino, Laura</creatorcontrib><description>Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codes ; Conjugation ; Error analysis ; Fixed points (mathematics) ; Mathematical analysis ; Periodic variations ; Polynomials ; Rational functions ; Reduction</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078113174?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Jung Kyu Canci</creatorcontrib><creatorcontrib>Paladino, Laura</creatorcontrib><title>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</title><title>arXiv.org</title><description>Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points.</description><subject>Codes</subject><subject>Conjugation</subject><subject>Error analysis</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Periodic variations</subject><subject>Polynomials</subject><subject>Rational functions</subject><subject>Reduction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjL0KwjAYAIMgWLTv8IFLOxTy09ruYnEQXBwLJW0TTKlJTFIX8d1V8AGc7objFiiijJGsyildodj7EWNMdyUtChah01mDdcIKp8ygerBG6eDBSHA8KKP5BHLW_Vc9DEIqLQYwD-GgSZobD9eue9av1iYhbdINWko-eRH_uEbb-nDZHzPrzH0WPrSjmd3n6VuKy4oQRsqc_Ve9AUxgPT0</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Jung Kyu Canci</creator><creator>Paladino, Laura</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160127</creationdate><title>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</title><author>Jung Kyu Canci ; Paladino, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20781131743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Codes</topic><topic>Conjugation</topic><topic>Error analysis</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Periodic variations</topic><topic>Polynomials</topic><topic>Rational functions</topic><topic>Reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Jung Kyu Canci</creatorcontrib><creatorcontrib>Paladino, Laura</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung Kyu Canci</au><au>Paladino, Laura</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\)</atitle><jtitle>arXiv.org</jtitle><date>2016-01-27</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Let \(P\in\mathbb{P}_1(\mathbb{Q})\) be a periodic point for a monic polynomial with coefficients in \(\mathbb{Z}\). With elementary techniques one sees that the minimal periodicity of \(P\) is at most \(2\). Recently we proved a generalization of this fact to the set of all rational functions defined over \({\mathbb{Q}}\) with good reduction everywhere (i.e. at any finite place of \(\mathbb{Q}\)). The set of monic polynomials with coefficients in \(\mathbb{Z}\) can be characterized, up to conjugation by elements in PGL\(_2({\mathbb{Z}})\), as the set of all rational functions defined over \(\mathbb{Q}\) with a totally ramified fixed point in \(\mathbb{Q}\) and with good reduction everywhere. Let \(p\) be a prime number and let \({\mathbb{F}}_p\) be the field with \(p\) elements. In the present paper we consider rational functions defined over the rational global function field \({\mathbb{F}}_p(t)\) with good reduction at every finite place. We prove some bounds for the cardinality of orbits in \({\mathbb{F}}_p(t)\cup \{\infty\}\) for periodic and preperiodic points.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078113174 |
source | Publicly Available Content (ProQuest) |
subjects | Codes Conjugation Error analysis Fixed points (mathematics) Mathematical analysis Periodic variations Polynomials Rational functions Reduction |
title | On preperiodic points of rational functions defined over \(\mathbb{F}_p(t)\) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20preperiodic%20points%20of%20rational%20functions%20defined%20over%20%5C(%5Cmathbb%7BF%7D_p(t)%5C)&rft.jtitle=arXiv.org&rft.au=Jung%20Kyu%20Canci&rft.date=2016-01-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078113174%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20781131743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078113174&rft_id=info:pmid/&rfr_iscdi=true |