Loading…
Bayesian inference in non-Markovian state-space models with applications to fractional order systems
Battery impedance spectroscopy models are given by fractional order (FO) differential equations. In the discrete-time domain, they give rise to state-space models where the latent process is not Markovian. Parameter estimation for these models is therefore challenging, especially for non-commensurat...
Saved in:
Published in: | arXiv.org 2016-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jacob, Pierre E Mahdi Alavi, S M Mahdi, Adam Payne, Stephen J Howey, David A |
description | Battery impedance spectroscopy models are given by fractional order (FO) differential equations. In the discrete-time domain, they give rise to state-space models where the latent process is not Markovian. Parameter estimation for these models is therefore challenging, especially for non-commensurate FO models. In this paper, we propose a Bayesian approach to identify the parameters of generic FO systems. The computational challenge is tackled with particle Markov chain Monte Carlo methods, with an implementation specifically designed for the non-Markovian setting. The approach is then applied to estimate the parameters of a battery non-commensurate FO equivalent circuit model. Extensive simulations are provided to study the practical identifiability of model parameters and their sensitivity to the choice of prior distributions, the number of observations, the magnitude of the input signal and the measurement noise. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078151485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078151485</sourcerecordid><originalsourceid>FETCH-proquest_journals_20781514853</originalsourceid><addsrcrecordid>eNqNi8EKgkAURYcgSMp_GGgtjKOTrouiTbv28tAnjY0zNm8s_PsU-oBW91zOvSsWySxLkzKXcsNiok4IIQ-FVCqLWHOECUmD5dq26NHWOBO3ziY38E_3XhQFCJjQALPsXYOG-EeHB4dhMLqGoJ0lHhxvPdRLAcOdb9BzmihgTzu2bsEQxr_csv3lfD9dk8G714gUqs6Nfr5RJUVRpirNS5X9t_oCjI9HSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078151485</pqid></control><display><type>article</type><title>Bayesian inference in non-Markovian state-space models with applications to fractional order systems</title><source>Publicly Available Content Database</source><creator>Jacob, Pierre E ; Mahdi Alavi, S M ; Mahdi, Adam ; Payne, Stephen J ; Howey, David A</creator><creatorcontrib>Jacob, Pierre E ; Mahdi Alavi, S M ; Mahdi, Adam ; Payne, Stephen J ; Howey, David A</creatorcontrib><description>Battery impedance spectroscopy models are given by fractional order (FO) differential equations. In the discrete-time domain, they give rise to state-space models where the latent process is not Markovian. Parameter estimation for these models is therefore challenging, especially for non-commensurate FO models. In this paper, we propose a Bayesian approach to identify the parameters of generic FO systems. The computational challenge is tackled with particle Markov chain Monte Carlo methods, with an implementation specifically designed for the non-Markovian setting. The approach is then applied to estimate the parameters of a battery non-commensurate FO equivalent circuit model. Extensive simulations are provided to study the practical identifiability of model parameters and their sensitivity to the choice of prior distributions, the number of observations, the magnitude of the input signal and the measurement noise.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Computer simulation ; Differential equations ; Equivalent circuits ; Markov analysis ; Markov chains ; Monte Carlo simulation ; Noise measurement ; Parameter estimation ; Parameter identification ; Parameter sensitivity ; Process parameters ; State space models ; Statistical inference</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078151485?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Jacob, Pierre E</creatorcontrib><creatorcontrib>Mahdi Alavi, S M</creatorcontrib><creatorcontrib>Mahdi, Adam</creatorcontrib><creatorcontrib>Payne, Stephen J</creatorcontrib><creatorcontrib>Howey, David A</creatorcontrib><title>Bayesian inference in non-Markovian state-space models with applications to fractional order systems</title><title>arXiv.org</title><description>Battery impedance spectroscopy models are given by fractional order (FO) differential equations. In the discrete-time domain, they give rise to state-space models where the latent process is not Markovian. Parameter estimation for these models is therefore challenging, especially for non-commensurate FO models. In this paper, we propose a Bayesian approach to identify the parameters of generic FO systems. The computational challenge is tackled with particle Markov chain Monte Carlo methods, with an implementation specifically designed for the non-Markovian setting. The approach is then applied to estimate the parameters of a battery non-commensurate FO equivalent circuit model. Extensive simulations are provided to study the practical identifiability of model parameters and their sensitivity to the choice of prior distributions, the number of observations, the magnitude of the input signal and the measurement noise.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Equivalent circuits</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Process parameters</subject><subject>State space models</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8EKgkAURYcgSMp_GGgtjKOTrouiTbv28tAnjY0zNm8s_PsU-oBW91zOvSsWySxLkzKXcsNiok4IIQ-FVCqLWHOECUmD5dq26NHWOBO3ziY38E_3XhQFCJjQALPsXYOG-EeHB4dhMLqGoJ0lHhxvPdRLAcOdb9BzmihgTzu2bsEQxr_csv3lfD9dk8G714gUqs6Nfr5RJUVRpirNS5X9t_oCjI9HSA</recordid><startdate>20160128</startdate><enddate>20160128</enddate><creator>Jacob, Pierre E</creator><creator>Mahdi Alavi, S M</creator><creator>Mahdi, Adam</creator><creator>Payne, Stephen J</creator><creator>Howey, David A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20160128</creationdate><title>Bayesian inference in non-Markovian state-space models with applications to fractional order systems</title><author>Jacob, Pierre E ; Mahdi Alavi, S M ; Mahdi, Adam ; Payne, Stephen J ; Howey, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20781514853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Equivalent circuits</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Process parameters</topic><topic>State space models</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Pierre E</creatorcontrib><creatorcontrib>Mahdi Alavi, S M</creatorcontrib><creatorcontrib>Mahdi, Adam</creatorcontrib><creatorcontrib>Payne, Stephen J</creatorcontrib><creatorcontrib>Howey, David A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Pierre E</au><au>Mahdi Alavi, S M</au><au>Mahdi, Adam</au><au>Payne, Stephen J</au><au>Howey, David A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian inference in non-Markovian state-space models with applications to fractional order systems</atitle><jtitle>arXiv.org</jtitle><date>2016-01-28</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Battery impedance spectroscopy models are given by fractional order (FO) differential equations. In the discrete-time domain, they give rise to state-space models where the latent process is not Markovian. Parameter estimation for these models is therefore challenging, especially for non-commensurate FO models. In this paper, we propose a Bayesian approach to identify the parameters of generic FO systems. The computational challenge is tackled with particle Markov chain Monte Carlo methods, with an implementation specifically designed for the non-Markovian setting. The approach is then applied to estimate the parameters of a battery non-commensurate FO equivalent circuit model. Extensive simulations are provided to study the practical identifiability of model parameters and their sensitivity to the choice of prior distributions, the number of observations, the magnitude of the input signal and the measurement noise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078151485 |
source | Publicly Available Content Database |
subjects | Bayesian analysis Computer simulation Differential equations Equivalent circuits Markov analysis Markov chains Monte Carlo simulation Noise measurement Parameter estimation Parameter identification Parameter sensitivity Process parameters State space models Statistical inference |
title | Bayesian inference in non-Markovian state-space models with applications to fractional order systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20inference%20in%20non-Markovian%20state-space%20models%20with%20applications%20to%20fractional%20order%20systems&rft.jtitle=arXiv.org&rft.au=Jacob,%20Pierre%20E&rft.date=2016-01-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078151485%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20781514853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078151485&rft_id=info:pmid/&rfr_iscdi=true |