Loading…

Modules with ascending chain condition on annihilators and Goldie modules

Using the concepts of prime module, semiprime module and the concept of ascending chain condition (ACC) on annihilators for an \(R\)-module \(M\) . We prove that if \ \(M\) is semiprime \ and projective in \(\sigma \left[ M\right] \), such that \(M\) satisfies ACC on annihilators, then \(M\) has fin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-01
Main Authors: Jaime Castro Pérez, Mauricio Medina Bárcenas, José Ríos Montes
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jaime Castro Pérez
Mauricio Medina Bárcenas
José Ríos Montes
description Using the concepts of prime module, semiprime module and the concept of ascending chain condition (ACC) on annihilators for an \(R\)-module \(M\) . We prove that if \ \(M\) is semiprime \ and projective in \(\sigma \left[ M\right] \), such that \(M\) satisfies ACC on annihilators, then \(M\) has finitely many minimal prime submodules. Moreover if each submodule \(N\subseteq M\) contains a uniform submodule, we prove that there is a bijective correspondence between a complete set of representatives of isomorphism classes of indecomposable non \(M\)-singular injective modules in \(\sigma \left[ M\right] \) and the set of minimal primes in \(M\). If \(M\) is Goldie module then \(% \hat{M}\cong E_{1}^{k_{1}}\oplus E_{2}^{k_{2}}\oplus ...\oplus E_{n}^{k_{n}}\) where each \(E_{i}\) is a uniform \(M\)-injective module. As an application, new characterizations of left Goldie rings are obtained.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078208602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078208602</sourcerecordid><originalsourceid>FETCH-proquest_journals_20782086023</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgWLT_MOC6ECf2sRdfC3fuS2iiTYkZ7aT4-wb0A4QLl8O53JnIUKlN0WwRFyJnHqSUWNVYlioT5wuZyVuGt4s9aO5sMC7coeu1C9BRougoQIoOwfXO60gjJzBwJG-chcf3YSXmN-3Z5r9eivVhf92diudIr8lybAeaxpBUi7JuUDaVRPXf6gOurTyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078208602</pqid></control><display><type>article</type><title>Modules with ascending chain condition on annihilators and Goldie modules</title><source>Publicly Available Content Database</source><creator>Jaime Castro Pérez ; Mauricio Medina Bárcenas ; José Ríos Montes</creator><creatorcontrib>Jaime Castro Pérez ; Mauricio Medina Bárcenas ; José Ríos Montes</creatorcontrib><description>Using the concepts of prime module, semiprime module and the concept of ascending chain condition (ACC) on annihilators for an \(R\)-module \(M\) . We prove that if \ \(M\) is semiprime \ and projective in \(\sigma \left[ M\right] \), such that \(M\) satisfies ACC on annihilators, then \(M\) has finitely many minimal prime submodules. Moreover if each submodule \(N\subseteq M\) contains a uniform submodule, we prove that there is a bijective correspondence between a complete set of representatives of isomorphism classes of indecomposable non \(M\)-singular injective modules in \(\sigma \left[ M\right] \) and the set of minimal primes in \(M\). If \(M\) is Goldie module then \(% \hat{M}\cong E_{1}^{k_{1}}\oplus E_{2}^{k_{2}}\oplus ...\oplus E_{n}^{k_{n}}\) where each \(E_{i}\) is a uniform \(M\)-injective module. As an application, new characterizations of left Goldie rings are obtained.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chains ; Isomorphism ; Modules</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078208602?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Jaime Castro Pérez</creatorcontrib><creatorcontrib>Mauricio Medina Bárcenas</creatorcontrib><creatorcontrib>José Ríos Montes</creatorcontrib><title>Modules with ascending chain condition on annihilators and Goldie modules</title><title>arXiv.org</title><description>Using the concepts of prime module, semiprime module and the concept of ascending chain condition (ACC) on annihilators for an \(R\)-module \(M\) . We prove that if \ \(M\) is semiprime \ and projective in \(\sigma \left[ M\right] \), such that \(M\) satisfies ACC on annihilators, then \(M\) has finitely many minimal prime submodules. Moreover if each submodule \(N\subseteq M\) contains a uniform submodule, we prove that there is a bijective correspondence between a complete set of representatives of isomorphism classes of indecomposable non \(M\)-singular injective modules in \(\sigma \left[ M\right] \) and the set of minimal primes in \(M\). If \(M\) is Goldie module then \(% \hat{M}\cong E_{1}^{k_{1}}\oplus E_{2}^{k_{2}}\oplus ...\oplus E_{n}^{k_{n}}\) where each \(E_{i}\) is a uniform \(M\)-injective module. As an application, new characterizations of left Goldie rings are obtained.</description><subject>Chains</subject><subject>Isomorphism</subject><subject>Modules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAQRYMgWLT_MOC6ECf2sRdfC3fuS2iiTYkZ7aT4-wb0A4QLl8O53JnIUKlN0WwRFyJnHqSUWNVYlioT5wuZyVuGt4s9aO5sMC7coeu1C9BRougoQIoOwfXO60gjJzBwJG-chcf3YSXmN-3Z5r9eivVhf92diudIr8lybAeaxpBUi7JuUDaVRPXf6gOurTyo</recordid><startdate>20160113</startdate><enddate>20160113</enddate><creator>Jaime Castro Pérez</creator><creator>Mauricio Medina Bárcenas</creator><creator>José Ríos Montes</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160113</creationdate><title>Modules with ascending chain condition on annihilators and Goldie modules</title><author>Jaime Castro Pérez ; Mauricio Medina Bárcenas ; José Ríos Montes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20782086023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chains</topic><topic>Isomorphism</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaime Castro Pérez</creatorcontrib><creatorcontrib>Mauricio Medina Bárcenas</creatorcontrib><creatorcontrib>José Ríos Montes</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaime Castro Pérez</au><au>Mauricio Medina Bárcenas</au><au>José Ríos Montes</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modules with ascending chain condition on annihilators and Goldie modules</atitle><jtitle>arXiv.org</jtitle><date>2016-01-13</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>Using the concepts of prime module, semiprime module and the concept of ascending chain condition (ACC) on annihilators for an \(R\)-module \(M\) . We prove that if \ \(M\) is semiprime \ and projective in \(\sigma \left[ M\right] \), such that \(M\) satisfies ACC on annihilators, then \(M\) has finitely many minimal prime submodules. Moreover if each submodule \(N\subseteq M\) contains a uniform submodule, we prove that there is a bijective correspondence between a complete set of representatives of isomorphism classes of indecomposable non \(M\)-singular injective modules in \(\sigma \left[ M\right] \) and the set of minimal primes in \(M\). If \(M\) is Goldie module then \(% \hat{M}\cong E_{1}^{k_{1}}\oplus E_{2}^{k_{2}}\oplus ...\oplus E_{n}^{k_{n}}\) where each \(E_{i}\) is a uniform \(M\)-injective module. As an application, new characterizations of left Goldie rings are obtained.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078208602
source Publicly Available Content Database
subjects Chains
Isomorphism
Modules
title Modules with ascending chain condition on annihilators and Goldie modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modules%20with%20ascending%20chain%20condition%20on%20annihilators%20and%20Goldie%20modules&rft.jtitle=arXiv.org&rft.au=Jaime%20Castro%20P%C3%A9rez&rft.date=2016-01-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078208602%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20782086023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078208602&rft_id=info:pmid/&rfr_iscdi=true