Loading…

Expanding scroll rings in a model for the photosensitive Belousov-Zhabotinsky reaction

While free scroll rings are non-stationary objects that either grow or contract with time, spatial confinement can have a large impact on their evolution reaching from significant lifetime extension [J. F. Totz , H. Engel, and O. Steinbock, New J. Phys. 17, 093043 (2015)] up to formation of stable s...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-01
Main Authors: Azhand, Arash, Buchholz, Rico, Totz, Jan F, Engel, H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While free scroll rings are non-stationary objects that either grow or contract with time, spatial confinement can have a large impact on their evolution reaching from significant lifetime extension [J. F. Totz , H. Engel, and O. Steinbock, New J. Phys. 17, 093043 (2015)] up to formation of stable stationary and breathing pacemakers [A. Azhand, J. F. Totz, and H. Engel, Europhys. Lett. 108, 10004 (2014)]. Here, we explore the parameter range in which the interaction between an axis-symmetric scroll ring and a confining planar no-flux boundary can be studied experimentally in transparent gel layers supporting chemical wave propagation in the photosensitive variant of the Belousov-Zhabotinsky medium. Based on full three-dimensional simulations of the underlying modified complete Oregonator model for experimentally realistic parameters, we determine the conditions for successful initiation of scroll rings in a phase diagram spanned by the layer thickness and the applied light intensity. Furthermore, we discuss whether the illumination-induced excitability gradient due to Lambert-Beer's law as well as a possible inclination of the filament plane with respect to the no-flux boundary can destabilize the scroll ring.
ISSN:2331-8422