Loading…
Fusing Face and Periocular biometrics using Canonical correlation analysis
This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its li...
Saved in:
Published in: | arXiv.org 2016-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lakshmiprabha, N S |
description | This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078239662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078239662</sourcerecordid><originalsourceid>FETCH-proquest_journals_20782396623</originalsourceid><addsrcrecordid>eNqNy70KwjAUQOEgCBbtOwScC_HG_jgXizg5uJdrjHJLTDS3GXx7C_oATmf5zkxkoPWmaLYAC5EzD0opqGooS52JY5eY_F12aKxEf5UnGymY5DDKC4WHHSMZll_Uog-eDDppQozW4UjBTxe6NxOvxPyGjm3-61Ksu_25PRTPGF7J8tgPIcUJcw-qbkDvqgr0f-oD59E9Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078239662</pqid></control><display><type>article</type><title>Fusing Face and Periocular biometrics using Canonical correlation analysis</title><source>Publicly Available Content Database</source><creator>Lakshmiprabha, N S</creator><creatorcontrib>Lakshmiprabha, N S</creatorcontrib><description>This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biometrics ; Correlation analysis ; Face recognition ; Feature extraction ; Head ; Occlusion ; Wavelet analysis</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078239662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Lakshmiprabha, N S</creatorcontrib><title>Fusing Face and Periocular biometrics using Canonical correlation analysis</title><title>arXiv.org</title><description>This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics.</description><subject>Biometrics</subject><subject>Correlation analysis</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Head</subject><subject>Occlusion</subject><subject>Wavelet analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy70KwjAUQOEgCBbtOwScC_HG_jgXizg5uJdrjHJLTDS3GXx7C_oATmf5zkxkoPWmaLYAC5EzD0opqGooS52JY5eY_F12aKxEf5UnGymY5DDKC4WHHSMZll_Uog-eDDppQozW4UjBTxe6NxOvxPyGjm3-61Ksu_25PRTPGF7J8tgPIcUJcw-qbkDvqgr0f-oD59E9Mg</recordid><startdate>20160329</startdate><enddate>20160329</enddate><creator>Lakshmiprabha, N S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160329</creationdate><title>Fusing Face and Periocular biometrics using Canonical correlation analysis</title><author>Lakshmiprabha, N S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20782396623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biometrics</topic><topic>Correlation analysis</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Head</topic><topic>Occlusion</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lakshmiprabha, N S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmiprabha, N S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fusing Face and Periocular biometrics using Canonical correlation analysis</atitle><jtitle>arXiv.org</jtitle><date>2016-03-29</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078239662 |
source | Publicly Available Content Database |
subjects | Biometrics Correlation analysis Face recognition Feature extraction Head Occlusion Wavelet analysis |
title | Fusing Face and Periocular biometrics using Canonical correlation analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fusing%20Face%20and%20Periocular%20biometrics%20using%20Canonical%20correlation%20analysis&rft.jtitle=arXiv.org&rft.au=Lakshmiprabha,%20N%20S&rft.date=2016-03-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078239662%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20782396623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078239662&rft_id=info:pmid/&rfr_iscdi=true |