Loading…

Fusing Face and Periocular biometrics using Canonical correlation analysis

This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its li...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-03
Main Author: Lakshmiprabha, N S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lakshmiprabha, N S
description This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078239662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078239662</sourcerecordid><originalsourceid>FETCH-proquest_journals_20782396623</originalsourceid><addsrcrecordid>eNqNy70KwjAUQOEgCBbtOwScC_HG_jgXizg5uJdrjHJLTDS3GXx7C_oATmf5zkxkoPWmaLYAC5EzD0opqGooS52JY5eY_F12aKxEf5UnGymY5DDKC4WHHSMZll_Uog-eDDppQozW4UjBTxe6NxOvxPyGjm3-61Ksu_25PRTPGF7J8tgPIcUJcw-qbkDvqgr0f-oD59E9Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078239662</pqid></control><display><type>article</type><title>Fusing Face and Periocular biometrics using Canonical correlation analysis</title><source>Publicly Available Content Database</source><creator>Lakshmiprabha, N S</creator><creatorcontrib>Lakshmiprabha, N S</creatorcontrib><description>This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biometrics ; Correlation analysis ; Face recognition ; Feature extraction ; Head ; Occlusion ; Wavelet analysis</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078239662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Lakshmiprabha, N S</creatorcontrib><title>Fusing Face and Periocular biometrics using Canonical correlation analysis</title><title>arXiv.org</title><description>This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics.</description><subject>Biometrics</subject><subject>Correlation analysis</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Head</subject><subject>Occlusion</subject><subject>Wavelet analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy70KwjAUQOEgCBbtOwScC_HG_jgXizg5uJdrjHJLTDS3GXx7C_oATmf5zkxkoPWmaLYAC5EzD0opqGooS52JY5eY_F12aKxEf5UnGymY5DDKC4WHHSMZll_Uog-eDDppQozW4UjBTxe6NxOvxPyGjm3-61Ksu_25PRTPGF7J8tgPIcUJcw-qbkDvqgr0f-oD59E9Mg</recordid><startdate>20160329</startdate><enddate>20160329</enddate><creator>Lakshmiprabha, N S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160329</creationdate><title>Fusing Face and Periocular biometrics using Canonical correlation analysis</title><author>Lakshmiprabha, N S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20782396623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biometrics</topic><topic>Correlation analysis</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Head</topic><topic>Occlusion</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lakshmiprabha, N S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmiprabha, N S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fusing Face and Periocular biometrics using Canonical correlation analysis</atitle><jtitle>arXiv.org</jtitle><date>2016-03-29</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>This paper presents a novel face and periocular biometric fusion at feature level using canonical correlation analysis. Face recognition itself has limitations such as illumination, pose, expression, occlusion etc. Also, periocular biometrics has spectacles, head angle, hair and expression as its limitations. Unimodal biometrics cannot surmount all these limitations. The recognition accuracy can be increased by fusing dual information (face and periocular) from a single source (face image) using canonical correlation analysis (CCA). This work also proposes a new wavelet decomposed local binary pattern (WD-LBP) feature extractor which provides sufficient features for fusion. A detailed analysis on face and periocular biometrics shows that WD-LBP features are more accurate and faster than local binary pattern (LBP) and gabor wavelet. The experimental results using Muct face database reveals that the proposed multimodal biometrics performs better than the unimodal biometrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078239662
source Publicly Available Content Database
subjects Biometrics
Correlation analysis
Face recognition
Feature extraction
Head
Occlusion
Wavelet analysis
title Fusing Face and Periocular biometrics using Canonical correlation analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fusing%20Face%20and%20Periocular%20biometrics%20using%20Canonical%20correlation%20analysis&rft.jtitle=arXiv.org&rft.au=Lakshmiprabha,%20N%20S&rft.date=2016-03-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2078239662%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20782396623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078239662&rft_id=info:pmid/&rfr_iscdi=true