Loading…

Maximizing Algebraic Connectivity in Interconnected Networks

Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-10
Main Authors: Shakeri, Heman, Albin, Nathan, Faryad Darabi Sahneh, Poggi-Corradini, Pietro, Scoglio, Caterina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shakeri, Heman
Albin, Nathan
Faryad Darabi Sahneh
Poggi-Corradini, Pietro
Scoglio, Caterina
description Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be non-uniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.
doi_str_mv 10.48550/arxiv.1510.06785
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078258729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078258729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-287dcb566429f3b9e06f36ec60ad36fce7107d54ee8130d84ef47e09c252bf093</originalsourceid><addsrcrecordid>eNotjctKw0AUQAdBsNR-QHcB16k3d97gpgQfhWo33ZfJ5E6ZWic6SWv16y3U1YGzOIexaQUzYaSEe5dP8Tir5FmA0kZesRFyXpVGIN6wSd_vAACVRin5iD28ulP8iL8xbYv5fktNdtEXdZcS-SEe4_BTxFQs0kDZXyS1xRsN311-72_ZdXD7nib_HLP10-O6fimXq-dFPV-WTqIt0ejWN1IpgTbwxhKowBV5Ba7lKnjSFehWCiJTcWiNoCA0gfUosQlg-ZjdXbKfufs6UD9sdt0hp_Nxg6ANSqPR8j9rUEnT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078258729</pqid></control><display><type>article</type><title>Maximizing Algebraic Connectivity in Interconnected Networks</title><source>Publicly Available Content Database</source><creator>Shakeri, Heman ; Albin, Nathan ; Faryad Darabi Sahneh ; Poggi-Corradini, Pietro ; Scoglio, Caterina</creator><creatorcontrib>Shakeri, Heman ; Albin, Nathan ; Faryad Darabi Sahneh ; Poggi-Corradini, Pietro ; Scoglio, Caterina</creatorcontrib><description>Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be non-uniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1510.06785</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Budgeting ; Budgets ; Connectivity ; Eigenvalues ; Links ; Multilayers ; Multiplexing ; Networks ; Optimization ; Weight</subject><ispartof>arXiv.org, 2015-10</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078258729?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Shakeri, Heman</creatorcontrib><creatorcontrib>Albin, Nathan</creatorcontrib><creatorcontrib>Faryad Darabi Sahneh</creatorcontrib><creatorcontrib>Poggi-Corradini, Pietro</creatorcontrib><creatorcontrib>Scoglio, Caterina</creatorcontrib><title>Maximizing Algebraic Connectivity in Interconnected Networks</title><title>arXiv.org</title><description>Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be non-uniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.</description><subject>Algebra</subject><subject>Budgeting</subject><subject>Budgets</subject><subject>Connectivity</subject><subject>Eigenvalues</subject><subject>Links</subject><subject>Multilayers</subject><subject>Multiplexing</subject><subject>Networks</subject><subject>Optimization</subject><subject>Weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKw0AUQAdBsNR-QHcB16k3d97gpgQfhWo33ZfJ5E6ZWic6SWv16y3U1YGzOIexaQUzYaSEe5dP8Tir5FmA0kZesRFyXpVGIN6wSd_vAACVRin5iD28ulP8iL8xbYv5fktNdtEXdZcS-SEe4_BTxFQs0kDZXyS1xRsN311-72_ZdXD7nib_HLP10-O6fimXq-dFPV-WTqIt0ejWN1IpgTbwxhKowBV5Ba7lKnjSFehWCiJTcWiNoCA0gfUosQlg-ZjdXbKfufs6UD9sdt0hp_Nxg6ANSqPR8j9rUEnT</recordid><startdate>20151022</startdate><enddate>20151022</enddate><creator>Shakeri, Heman</creator><creator>Albin, Nathan</creator><creator>Faryad Darabi Sahneh</creator><creator>Poggi-Corradini, Pietro</creator><creator>Scoglio, Caterina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151022</creationdate><title>Maximizing Algebraic Connectivity in Interconnected Networks</title><author>Shakeri, Heman ; Albin, Nathan ; Faryad Darabi Sahneh ; Poggi-Corradini, Pietro ; Scoglio, Caterina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-287dcb566429f3b9e06f36ec60ad36fce7107d54ee8130d84ef47e09c252bf093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Budgeting</topic><topic>Budgets</topic><topic>Connectivity</topic><topic>Eigenvalues</topic><topic>Links</topic><topic>Multilayers</topic><topic>Multiplexing</topic><topic>Networks</topic><topic>Optimization</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Shakeri, Heman</creatorcontrib><creatorcontrib>Albin, Nathan</creatorcontrib><creatorcontrib>Faryad Darabi Sahneh</creatorcontrib><creatorcontrib>Poggi-Corradini, Pietro</creatorcontrib><creatorcontrib>Scoglio, Caterina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakeri, Heman</au><au>Albin, Nathan</au><au>Faryad Darabi Sahneh</au><au>Poggi-Corradini, Pietro</au><au>Scoglio, Caterina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Algebraic Connectivity in Interconnected Networks</atitle><jtitle>arXiv.org</jtitle><date>2015-10-22</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be non-uniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1510.06785</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078258729
source Publicly Available Content Database
subjects Algebra
Budgeting
Budgets
Connectivity
Eigenvalues
Links
Multilayers
Multiplexing
Networks
Optimization
Weight
title Maximizing Algebraic Connectivity in Interconnected Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Algebraic%20Connectivity%20in%20Interconnected%20Networks&rft.jtitle=arXiv.org&rft.au=Shakeri,%20Heman&rft.date=2015-10-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1510.06785&rft_dat=%3Cproquest%3E2078258729%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-287dcb566429f3b9e06f36ec60ad36fce7107d54ee8130d84ef47e09c252bf093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078258729&rft_id=info:pmid/&rfr_iscdi=true