Loading…

Neutron electric dipole moment using \(N_f{=}2{+}1{+}1\) twisted mass fermions

We evaluate the neutron electric dipole moment \(\vert \vec{d}_N\vert\) using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using \(N_f{=}2{+}1{+}1\) twisted mass fermions at one value of the lattice spacing of \(a \simeq 0.082 \ {\...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-03
Main Authors: Alexandrou, C, Athenodorou, A, Constantinou, M, Hadjiyiannakou, K, Jansen, K, Koutsou, G, Ottnad, K, Petschlies, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alexandrou, C
Athenodorou, A
Constantinou, M
Hadjiyiannakou, K
Jansen, K
Koutsou, G
Ottnad, K
Petschlies, M
description We evaluate the neutron electric dipole moment \(\vert \vec{d}_N\vert\) using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using \(N_f{=}2{+}1{+}1\) twisted mass fermions at one value of the lattice spacing of \(a \simeq 0.082 \ {\rm fm}\) and a light quark mass corresponding to \(m_{\pi} \simeq 373 \ {\rm MeV}\). Our approach to extract the neutron electric dipole moment is based on the calculation of the \(CP\)-odd electromagnetic form factor \(F_3(Q^2)\) for small values of the vacuum angle \(\theta\) in the limit of zero Euclidean momentum transfer \(Q^2\). The limit \(Q^2 \to 0\) is realized either by adopting a parameterization of the momentum dependence of \(F_3(Q^2)\) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of \(F_3(Q^2)\). The computation in the presence of a \(CP\)-violating term requires the evaluation of the topological charge \({\cal Q}\). This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of \(\vert \vec{d}_N\vert=0.045(6)(1)\ \bar{\theta} \ e \cdot {\rm fm}\) for the ensemble with \(m_\pi=373\) MeV considered.
doi_str_mv 10.48550/arxiv.1510.05823
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078277256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078277256</sourcerecordid><originalsourceid>FETCH-proquest_journals_20782772563</originalsourceid><addsrcrecordid>eNqNjrEKwjAURYMgKOoHuAVcFLGmL8Z2cRLFqZOjUEr7KpE20bxUBfHfreAHOFwunHuGy9g4FMEqVkosM_fU9yBULRAqBtlhfZAyXMQrgB4bEV2EELCOQCnZZ0mCjXfWcKww907nvNBXWyGvbY3G84a0OfPTNEnL1-YNr_k7_OY04_6hyWPB64yIl-hqbQ0NWbfMKsLRrwdsst8dt4fF1dlbg-TTi22caacURBRD1N5Yy_-sD9lmRAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078277256</pqid></control><display><type>article</type><title>Neutron electric dipole moment using \(N_f{=}2{+}1{+}1\) twisted mass fermions</title><source>Publicly Available Content (ProQuest)</source><creator>Alexandrou, C ; Athenodorou, A ; Constantinou, M ; Hadjiyiannakou, K ; Jansen, K ; Koutsou, G ; Ottnad, K ; Petschlies, M</creator><creatorcontrib>Alexandrou, C ; Athenodorou, A ; Constantinou, M ; Hadjiyiannakou, K ; Jansen, K ; Koutsou, G ; Ottnad, K ; Petschlies, M</creatorcontrib><description>We evaluate the neutron electric dipole moment \(\vert \vec{d}_N\vert\) using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using \(N_f{=}2{+}1{+}1\) twisted mass fermions at one value of the lattice spacing of \(a \simeq 0.082 \ {\rm fm}\) and a light quark mass corresponding to \(m_{\pi} \simeq 373 \ {\rm MeV}\). Our approach to extract the neutron electric dipole moment is based on the calculation of the \(CP\)-odd electromagnetic form factor \(F_3(Q^2)\) for small values of the vacuum angle \(\theta\) in the limit of zero Euclidean momentum transfer \(Q^2\). The limit \(Q^2 \to 0\) is realized either by adopting a parameterization of the momentum dependence of \(F_3(Q^2)\) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of \(F_3(Q^2)\). The computation in the presence of a \(CP\)-violating term requires the evaluation of the topological charge \({\cal Q}\). This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of \(\vert \vec{d}_N\vert=0.045(6)(1)\ \bar{\theta} \ e \cdot {\rm fm}\) for the ensemble with \(m_\pi=373\) MeV considered.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1510.05823</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cooling ; Dependence ; Dipole moments ; Electric dipoles ; Fermions ; Form factors ; Gradient flow ; Momentum transfer ; Parameterization ; Quantum chromodynamics</subject><ispartof>arXiv.org, 2016-03</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078277256?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Alexandrou, C</creatorcontrib><creatorcontrib>Athenodorou, A</creatorcontrib><creatorcontrib>Constantinou, M</creatorcontrib><creatorcontrib>Hadjiyiannakou, K</creatorcontrib><creatorcontrib>Jansen, K</creatorcontrib><creatorcontrib>Koutsou, G</creatorcontrib><creatorcontrib>Ottnad, K</creatorcontrib><creatorcontrib>Petschlies, M</creatorcontrib><title>Neutron electric dipole moment using \(N_f{=}2{+}1{+}1\) twisted mass fermions</title><title>arXiv.org</title><description>We evaluate the neutron electric dipole moment \(\vert \vec{d}_N\vert\) using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using \(N_f{=}2{+}1{+}1\) twisted mass fermions at one value of the lattice spacing of \(a \simeq 0.082 \ {\rm fm}\) and a light quark mass corresponding to \(m_{\pi} \simeq 373 \ {\rm MeV}\). Our approach to extract the neutron electric dipole moment is based on the calculation of the \(CP\)-odd electromagnetic form factor \(F_3(Q^2)\) for small values of the vacuum angle \(\theta\) in the limit of zero Euclidean momentum transfer \(Q^2\). The limit \(Q^2 \to 0\) is realized either by adopting a parameterization of the momentum dependence of \(F_3(Q^2)\) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of \(F_3(Q^2)\). The computation in the presence of a \(CP\)-violating term requires the evaluation of the topological charge \({\cal Q}\). This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of \(\vert \vec{d}_N\vert=0.045(6)(1)\ \bar{\theta} \ e \cdot {\rm fm}\) for the ensemble with \(m_\pi=373\) MeV considered.</description><subject>Cooling</subject><subject>Dependence</subject><subject>Dipole moments</subject><subject>Electric dipoles</subject><subject>Fermions</subject><subject>Form factors</subject><subject>Gradient flow</subject><subject>Momentum transfer</subject><subject>Parameterization</subject><subject>Quantum chromodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjrEKwjAURYMgKOoHuAVcFLGmL8Z2cRLFqZOjUEr7KpE20bxUBfHfreAHOFwunHuGy9g4FMEqVkosM_fU9yBULRAqBtlhfZAyXMQrgB4bEV2EELCOQCnZZ0mCjXfWcKww907nvNBXWyGvbY3G84a0OfPTNEnL1-YNr_k7_OY04_6hyWPB64yIl-hqbQ0NWbfMKsLRrwdsst8dt4fF1dlbg-TTi22caacURBRD1N5Yy_-sD9lmRAo</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Alexandrou, C</creator><creator>Athenodorou, A</creator><creator>Constantinou, M</creator><creator>Hadjiyiannakou, K</creator><creator>Jansen, K</creator><creator>Koutsou, G</creator><creator>Ottnad, K</creator><creator>Petschlies, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160315</creationdate><title>Neutron electric dipole moment using \(N_f{=}2{+}1{+}1\) twisted mass fermions</title><author>Alexandrou, C ; Athenodorou, A ; Constantinou, M ; Hadjiyiannakou, K ; Jansen, K ; Koutsou, G ; Ottnad, K ; Petschlies, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20782772563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cooling</topic><topic>Dependence</topic><topic>Dipole moments</topic><topic>Electric dipoles</topic><topic>Fermions</topic><topic>Form factors</topic><topic>Gradient flow</topic><topic>Momentum transfer</topic><topic>Parameterization</topic><topic>Quantum chromodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Alexandrou, C</creatorcontrib><creatorcontrib>Athenodorou, A</creatorcontrib><creatorcontrib>Constantinou, M</creatorcontrib><creatorcontrib>Hadjiyiannakou, K</creatorcontrib><creatorcontrib>Jansen, K</creatorcontrib><creatorcontrib>Koutsou, G</creatorcontrib><creatorcontrib>Ottnad, K</creatorcontrib><creatorcontrib>Petschlies, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandrou, C</au><au>Athenodorou, A</au><au>Constantinou, M</au><au>Hadjiyiannakou, K</au><au>Jansen, K</au><au>Koutsou, G</au><au>Ottnad, K</au><au>Petschlies, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Neutron electric dipole moment using \(N_f{=}2{+}1{+}1\) twisted mass fermions</atitle><jtitle>arXiv.org</jtitle><date>2016-03-15</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We evaluate the neutron electric dipole moment \(\vert \vec{d}_N\vert\) using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using \(N_f{=}2{+}1{+}1\) twisted mass fermions at one value of the lattice spacing of \(a \simeq 0.082 \ {\rm fm}\) and a light quark mass corresponding to \(m_{\pi} \simeq 373 \ {\rm MeV}\). Our approach to extract the neutron electric dipole moment is based on the calculation of the \(CP\)-odd electromagnetic form factor \(F_3(Q^2)\) for small values of the vacuum angle \(\theta\) in the limit of zero Euclidean momentum transfer \(Q^2\). The limit \(Q^2 \to 0\) is realized either by adopting a parameterization of the momentum dependence of \(F_3(Q^2)\) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of \(F_3(Q^2)\). The computation in the presence of a \(CP\)-violating term requires the evaluation of the topological charge \({\cal Q}\). This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of \(\vert \vec{d}_N\vert=0.045(6)(1)\ \bar{\theta} \ e \cdot {\rm fm}\) for the ensemble with \(m_\pi=373\) MeV considered.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1510.05823</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078277256
source Publicly Available Content (ProQuest)
subjects Cooling
Dependence
Dipole moments
Electric dipoles
Fermions
Form factors
Gradient flow
Momentum transfer
Parameterization
Quantum chromodynamics
title Neutron electric dipole moment using \(N_f{=}2{+}1{+}1\) twisted mass fermions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Neutron%20electric%20dipole%20moment%20using%20%5C(N_f%7B=%7D2%7B+%7D1%7B+%7D1%5C)%20twisted%20mass%20fermions&rft.jtitle=arXiv.org&rft.au=Alexandrou,%20C&rft.date=2016-03-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1510.05823&rft_dat=%3Cproquest%3E2078277256%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20782772563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078277256&rft_id=info:pmid/&rfr_iscdi=true