Loading…
Mordell integrals and Giveon-Kutasov duality
We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix,...
Saved in:
Published in: | arXiv.org 2016-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Giasemidis, Georgios Tierz, Miguel |
description | We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours). |
doi_str_mv | 10.48550/arxiv.1511.00203 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078277641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078277641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-45e2d7d6a40829657e06d10fbbabcba6a83c039535c70b95124a622abda997353</originalsourceid><addsrcrecordid>eNotjcFKxDAURYMgOIzzAe4Kbk19eclL2qUMOoojbmY_vDQZ6VBaTdqif29BVxcOh3OFuFFQmooI7jl9t3OpSKkSAEFfiBVqrWRlEK_EJuczLNw6JNIrcfc2pBC7rmj7MX4k7nLBfSh27RyHXr5OI-dhLsLEXTv-XIvL02LEzf-uxeHp8bB9lvv33cv2YS-ZUElDEYMLlg1UWFtyEWxQcPKefePZcqUb0DVpahz4mhQatojsA9e106TX4vYv-5mGrynm8XgeptQvj0cEV6Fz1ij9C7vVQvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078277641</pqid></control><display><type>article</type><title>Mordell integrals and Giveon-Kutasov duality</title><source>Publicly Available Content Database</source><creator>Giasemidis, Georgios ; Tierz, Miguel</creator><creatorcontrib>Giasemidis, Georgios ; Tierz, Miguel</creatorcontrib><description>We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1511.00203</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Field theory (physics) ; Flavors ; Integrals ; Mathematical models ; Partitions ; Partitions (mathematics) ; Quantum theory ; Supersymmetry</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078277641?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Giasemidis, Georgios</creatorcontrib><creatorcontrib>Tierz, Miguel</creatorcontrib><title>Mordell integrals and Giveon-Kutasov duality</title><title>arXiv.org</title><description>We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours).</description><subject>Field theory (physics)</subject><subject>Flavors</subject><subject>Integrals</subject><subject>Mathematical models</subject><subject>Partitions</subject><subject>Partitions (mathematics)</subject><subject>Quantum theory</subject><subject>Supersymmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjcFKxDAURYMgOIzzAe4Kbk19eclL2qUMOoojbmY_vDQZ6VBaTdqif29BVxcOh3OFuFFQmooI7jl9t3OpSKkSAEFfiBVqrWRlEK_EJuczLNw6JNIrcfc2pBC7rmj7MX4k7nLBfSh27RyHXr5OI-dhLsLEXTv-XIvL02LEzf-uxeHp8bB9lvv33cv2YS-ZUElDEYMLlg1UWFtyEWxQcPKefePZcqUb0DVpahz4mhQatojsA9e106TX4vYv-5mGrynm8XgeptQvj0cEV6Fz1ij9C7vVQvs</recordid><startdate>20160116</startdate><enddate>20160116</enddate><creator>Giasemidis, Georgios</creator><creator>Tierz, Miguel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160116</creationdate><title>Mordell integrals and Giveon-Kutasov duality</title><author>Giasemidis, Georgios ; Tierz, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-45e2d7d6a40829657e06d10fbbabcba6a83c039535c70b95124a622abda997353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Field theory (physics)</topic><topic>Flavors</topic><topic>Integrals</topic><topic>Mathematical models</topic><topic>Partitions</topic><topic>Partitions (mathematics)</topic><topic>Quantum theory</topic><topic>Supersymmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Giasemidis, Georgios</creatorcontrib><creatorcontrib>Tierz, Miguel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giasemidis, Georgios</au><au>Tierz, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mordell integrals and Giveon-Kutasov duality</atitle><jtitle>arXiv.org</jtitle><date>2016-01-16</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1511.00203</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2016-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2078277641 |
source | Publicly Available Content Database |
subjects | Field theory (physics) Flavors Integrals Mathematical models Partitions Partitions (mathematics) Quantum theory Supersymmetry |
title | Mordell integrals and Giveon-Kutasov duality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mordell%20integrals%20and%20Giveon-Kutasov%20duality&rft.jtitle=arXiv.org&rft.au=Giasemidis,%20Georgios&rft.date=2016-01-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1511.00203&rft_dat=%3Cproquest%3E2078277641%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-45e2d7d6a40829657e06d10fbbabcba6a83c039535c70b95124a622abda997353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078277641&rft_id=info:pmid/&rfr_iscdi=true |