Loading…

Mordell integrals and Giveon-Kutasov duality

We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2016-01
Main Authors: Giasemidis, Georgios, Tierz, Miguel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Giasemidis, Georgios
Tierz, Miguel
description We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours).
doi_str_mv 10.48550/arxiv.1511.00203
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2078277641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078277641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-45e2d7d6a40829657e06d10fbbabcba6a83c039535c70b95124a622abda997353</originalsourceid><addsrcrecordid>eNotjcFKxDAURYMgOIzzAe4Kbk19eclL2qUMOoojbmY_vDQZ6VBaTdqif29BVxcOh3OFuFFQmooI7jl9t3OpSKkSAEFfiBVqrWRlEK_EJuczLNw6JNIrcfc2pBC7rmj7MX4k7nLBfSh27RyHXr5OI-dhLsLEXTv-XIvL02LEzf-uxeHp8bB9lvv33cv2YS-ZUElDEYMLlg1UWFtyEWxQcPKefePZcqUb0DVpahz4mhQatojsA9e106TX4vYv-5mGrynm8XgeptQvj0cEV6Fz1ij9C7vVQvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078277641</pqid></control><display><type>article</type><title>Mordell integrals and Giveon-Kutasov duality</title><source>Publicly Available Content Database</source><creator>Giasemidis, Georgios ; Tierz, Miguel</creator><creatorcontrib>Giasemidis, Georgios ; Tierz, Miguel</creatorcontrib><description>We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1511.00203</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Field theory (physics) ; Flavors ; Integrals ; Mathematical models ; Partitions ; Partitions (mathematics) ; Quantum theory ; Supersymmetry</subject><ispartof>arXiv.org, 2016-01</ispartof><rights>2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2078277641?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Giasemidis, Georgios</creatorcontrib><creatorcontrib>Tierz, Miguel</creatorcontrib><title>Mordell integrals and Giveon-Kutasov duality</title><title>arXiv.org</title><description>We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours).</description><subject>Field theory (physics)</subject><subject>Flavors</subject><subject>Integrals</subject><subject>Mathematical models</subject><subject>Partitions</subject><subject>Partitions (mathematics)</subject><subject>Quantum theory</subject><subject>Supersymmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjcFKxDAURYMgOIzzAe4Kbk19eclL2qUMOoojbmY_vDQZ6VBaTdqif29BVxcOh3OFuFFQmooI7jl9t3OpSKkSAEFfiBVqrWRlEK_EJuczLNw6JNIrcfc2pBC7rmj7MX4k7nLBfSh27RyHXr5OI-dhLsLEXTv-XIvL02LEzf-uxeHp8bB9lvv33cv2YS-ZUElDEYMLlg1UWFtyEWxQcPKefePZcqUb0DVpahz4mhQatojsA9e106TX4vYv-5mGrynm8XgeptQvj0cEV6Fz1ij9C7vVQvs</recordid><startdate>20160116</startdate><enddate>20160116</enddate><creator>Giasemidis, Georgios</creator><creator>Tierz, Miguel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160116</creationdate><title>Mordell integrals and Giveon-Kutasov duality</title><author>Giasemidis, Georgios ; Tierz, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-45e2d7d6a40829657e06d10fbbabcba6a83c039535c70b95124a622abda997353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Field theory (physics)</topic><topic>Flavors</topic><topic>Integrals</topic><topic>Mathematical models</topic><topic>Partitions</topic><topic>Partitions (mathematics)</topic><topic>Quantum theory</topic><topic>Supersymmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Giasemidis, Georgios</creatorcontrib><creatorcontrib>Tierz, Miguel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giasemidis, Georgios</au><au>Tierz, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mordell integrals and Giveon-Kutasov duality</atitle><jtitle>arXiv.org</jtitle><date>2016-01-16</date><risdate>2016</risdate><eissn>2331-8422</eissn><abstract>We solve, for finite \(N\), the matrix model of supersymmetric \(U(N)\) Chern-Simons theory coupled to \(N_{f}\) massive hypermultiplets of \(R\)-charge \(\frac{1}{2}\), together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order \(N_{f}-1\)) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the \(\mathcal{N}=3\) setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to \(N_{f}=12\) flavours).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1511.00203</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2016-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2078277641
source Publicly Available Content Database
subjects Field theory (physics)
Flavors
Integrals
Mathematical models
Partitions
Partitions (mathematics)
Quantum theory
Supersymmetry
title Mordell integrals and Giveon-Kutasov duality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mordell%20integrals%20and%20Giveon-Kutasov%20duality&rft.jtitle=arXiv.org&rft.au=Giasemidis,%20Georgios&rft.date=2016-01-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1511.00203&rft_dat=%3Cproquest%3E2078277641%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-45e2d7d6a40829657e06d10fbbabcba6a83c039535c70b95124a622abda997353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2078277641&rft_id=info:pmid/&rfr_iscdi=true